Объемно планировочная схема одноэтажного промышленного здания. Конструктивные решения промышленных зданий. Виды размеров конструктивных элементов

Унификация -- приведение к единообразию размеров объемно-планировочных параметров зданий и их конструктивных элементов, изготовляемых на заводах. Унификация имеет целью ограничение числа объемно-планировочных параметров и количества типоразмеров изделий (по форме и конструкции). Осуществляют ее путем отбора наиболее совершенных решений по архитектурным, техническим и экономическим требованиям.

Типизация -- техническое направление в проектировании и строительстве, позволяющее многократно осуществлять строительство разнообразных объектов благодаря применению унифицированных объемно-планировочных и конструктивных решений, доведенных до стадии утверждения типовых проектов и конструкций.

Помимо изыскания оптимальных объемно-планировочных параметров (пролет, шаг и высота) и конструктивных (сортамент строительных изделий), унификация и типизация должны устанавливать градации функциональных параметров: долговечности отдельных конструкций и зданий в целом, температурно-влажвостных и технологических режимов и т. п.

Типовые объемно-планировочные и конструктивные решения должны позволять внедрять прогрессивные нормы и методы производства и предусматривать возможность развития и совершенствования технологии производства. Здесь надо иметь в виду, что периоды перестановки и замены технологического оборудования весьма различны: для одних производств они равны 3--4 годам, для других -- 10 годам и более.

При разработке вопросов типизации и унификации учитывают также перспективы развития несущих конструкций (особенно большепролетных зданий), требования модульной системы, возможность обеспечения выразительного архитектурно-художественного облика зданий и технико- экономические показатели.

Таким образом, унифицированные объемно-планировочные и конструктивные решения не являются чем-то застывшим; они постоянно совершенствуются в связи с прогрессом в технологии строительного производства, изменением норм проектирования и градостроительных требований.

Обеспечить взаимозаменяемость элементов можно при комплексном подходе к их конструированию. Необходимым условием взаимозаменяемости является выработка единой системы допусков изготовления и сборки конструкций вне зависимости от их материалов.

Примерами взаимозаменяемых конструкций могут служить замена металлических ригелей железобетонными или деревянными, покрытии с прогонами беспрогонными, стеновых блоков крупноразмерными панелями и т. п. Взаимозаменяемыми должны быть панели наружных стен зданий, одинаковые по размерам, по теплотехническим и иным качествам, но выполненные из различных материалов.

Высшей формой унификации является создание универсальных конструкций и деталей, пригодных для различных объектов и конструктивных схем (например, использование колонн одного типоразмера в зданиях с различными пролетами, применение одних и тех же панелей для стен и покрытий и т. п.).

Подобно универсальным планировочным решениям, делающим здания гибкими в технологическом отношении, универсальные конструкции и детали расширяют область их использования. Итак, основными задачами унификации и типизации являются:

уменьшение числа типов промышленных зданий и сооружении и создание условий для их широкого блокирования;

сокращение числа типоразмеров сборных конструкций и деталей с целью повышения серийности и снижения стоимости их заводского изготовления;

рациональное членение конструкций на монтажные единицы и разработка несложных приемов их сопряжения и крепления;

создание лучших условий для использования прогрессивных технических решений.

Промышленные предприятия классифицируют по отраслям производства. Отрасль производства – составная часть отрасли народного хозяйства, к которой относятся промышленность, сельское хозяйство, транспорт, строительство и др.

Классификация отраслей производства в промышленности устанавливается по различным признакам, например, по однородности экономического назначения продукции (производственного или потребительского), виду обрабатываемого сырья, характеру технологического процесса и т. п. Всего насчитывается более 15 крупных отраслей (электроэнергетика, черная металлургия, цветная металлургия, машиностроение, металлообработка и др.).

Крупные отрасли промышленности, в свою очередь, делят на более мелкие по признаку назначения продукции или происхождения сырья, по однородности технологических процессов и т. п. Таких более мелких отраслей свыше 160. Например, в машиностроение, как в крупную отрасль промышленности, входят автомобилестроение, тракторостроение, станкостроение и др.

На основе отраслевой классификации производства построена и классификация промышленных зданий . Независимо от отрасли промышленности их разделяют на четыре основные группы: производственные, энергетические, здания транспортно-складского хозяйства и вспомогательные здания или помещения.

К производственным относят здания, в которых размещены цехи, выпускающие готовую продукцию или полуфабрикаты. Производственные здания по назначению разделяют на многие виды соответственно отраслям производства. Это могут быть металлообрабатывающие, механосборочные, термические, кузнечно-штамповочные, мартеновские цехи, цехи по производству железобетонных конструкций, ткацкие цехи, цехи по обработке пищевых продуктов, цехи вспомогательного производства, например, инструментальные, ремонтные и др.

К энергетическим относят здания ТЭЦ (теплоэлектроцентралей), снабжающих промышленные предприятия подстанции, компрессорные станции снабжающие электроэнергией и теплом, котельные, электрические и трансформаторные подстанции и др.

Здания транспортно-складского хозяйства включают гаражи, стоянки напольного промышленного транспорта, склады готовой продукции, полуфабрикатов и сырья, пожарные депо и т. п.

К вспомогательным относятся здания для размещения административно-конторских помещений, помещений общественных организаций, бытовых помещений и устройств (душевых, гардеробных и пр.), пунктов питания и медицинских пунктов. Вспомогательные помещения в зависимости от вида производства можно располагать непосредственно в производственных зданиях.

Размеры и расположение помещений, геометрическая форма, этажность и тип зданий напрямую зависят от их функционального назначения, пространственной организации происходящих в них производственных процессов, размещения и габаритов технологического оборудования, размеров изготовляемых изделий, а также режима работы в помещениях. Однако эта зависимость может быть более или менее жесткой.

В ряде производств (тяжелое машиностроение и др.) жесткие схемы производственных потоков: тяжелое оборудование, крупные габариты изделий, горизонтальность их передвижения – предопределяют их размещение в одноэтажных корпусах. Другие производства требуют вертикального решения технологических процессов (например мельница) и, соответственно, размещения в высоких зданиях. В ряде производств (например в химической промышленности) открытое или расположенное в цехах-агрегатах технологическое оборудование непосредственно определяет их форму и размещение.

Однако во многих видах производств не существует столь жесткой зависимости между технологией и типом зданий. Сравнительно небольшие вес и габариты оборудования и изделий, возможность многовариантной организации производственных потоков позволяют проводить более свободный выбор типа зданий и их этажности – от одноэтажных до многоэтажных, различной формы в плане и объемном решении.

К настоящему времени в промышленной архитектуре сложилась широкая типология промышленных зданий по назначению, объемно-планировочным и конструктивным решениям.

По функциональному признаку они делятся на производственные, подсобно-производственные (энергетические, складские, ремонтные, транспортные и др.), обслуживающие производство и вспомогательные здания (административные, санитарно-бытовые, общественного питания и др.), обслуживающие трудящихся. По объемно-планировочному решению они подразделяются:

  • на одноэтажные (павильонной, сплошной застройки, пролетные, ячейковые, зальные);
  • двухэтажные (пролетные, ячейковые, зальные, с техническим этажом и без него);
  • многоэтажные (узкие шириной до 60 м, пролетные, ячейковые, зальные, с техническими этажами);
  • разноэтажные (смешанной этажности, каскадного типа и др.).


К новым типам производственных зданий относятся здания-оболочки, здания террасного типа, закрытые (без световых проемов) моноблоки.

К особому виду производственных зданий относятся многофункциональные (производство + обслуживание), универсальные (с неизменяемой или гибкой планировкой), развивающиеся (растущие) здания.

Широкий диапазон объемно-планировочных типов зданий позволяет при проектировании сделать необходимый выбор оптимального типа исходя из особенностей производства и пространственной организации производственных потоков (горизонтальной, вертикальной или смешанной), характеристики машинного оборудования и изделий (габариты, вес, нагрузки на перекрытия) и необходимого микроклимата (освещение, температурно-влажностный режим, воздухообмен и др.).

Одноэтажные производственные здания применяются в областях тяжелого машиностроения, транспорта, строительной, энергетической, химической, пищевой, текстильной и многих других отраслях промышленности с горизонтальными технологическими процессами. Двухэтажные здания находят применение для различных производств легкой промышленности (швейной, трикотажной, галантерейной и др.), точного машиностроения, приборостроения, пищевой промышленности и др.

Многоэтажные получают все более широкое применение в предприятиях легкой промышленности, приборостроения и электроники, точной механики, некоторых видов пищевой, химической и других видов промышленности, где возможна горизонтально-вертикальная схема производственных процессов. В них также могут размещаться вспомогательные помещения: административно-бытовые, инженерно-конструкторские, научно-исследовательские и пр.

Здания, предназначенные для размещения в них производств, называют промышленными.

Промышленные здания по назначению классифицируют на:

  • производственные основные , предназначенные для размещения цехов, изготавливающих продукцию (механосборочные, литейные, кузнечные и др.);
  • производственные вспомогательные , которые обслуживают основное производство, (ремонтно-механические, инструментальные и др.);
  • энергетические (ТЭЦ, котельные, трансформаторные и др.);
  • транспортные (гаражи, депо и др.);
  • складские , предназначенные для хранения готовой продукции, сырья, материалов;
  • вспомогательные (административно-бытовые), предназначенные для размещения заводоуправления, лабораторий, столовых, поликлиник, бытовых помещений и др.).

На выбор ОПР и конструктивного решения здания влияет технологический процесс, который будет протекать в здании.

Технологическим процессом называется совокупность технологических, транспортных и складских операций, повторяющихся многократно и циклично в определенной последовательности.

Промышленные здания должны удовлетворять следующим общим требованиям:

  • функциональным, которые обеспечивает рациональное размещение технологического оборудования;
  • техническим, которые обеспечивают прочность, устойчивость, долговечность;
  • противопожарным, которые предусматривают достаточную степень огнестойкости;
  • архитектурно-художественным, которые способствуют созданию выразительного облика промышленного здания;
  • экономическим, которые предусматривают минимальные затраты труда, средств и времени;
  • индустриальности;

а также специальным требованиям:

  • жаростойкости и огнестойкости;
  • кислотостойкости и химической стойкости;
  • взрывобезопасность

Для осуществления подъемно-транспортных операций внутри цеха необходимо применение различного подъемно-транспортного оборудования .
К напольному безрельсовому оборудованию относятся автопогрузчики, автокары. К напольному рельсовому оборудованию относятся козловые краны, все виды железнодорожного транспорта. К непрерывному оборудованию относятся конвейеры, лифты.

Напольное оборудование промышленных зданий: а – автопогрузчик; б – автокар; в – ленточный транспортер; г – козловой кран; д – вагон; е – рольганг


К подвижному подъемно-транспортному оборудованию для подъема и транспортировки груза в подвешенном состоянии применяют электротали.

Электроталь: 1 — грузовая лебедка;
2 — монорельс; 3 — подвеска; 4 — пульт управления

Подвижным опорным подъемно-транспортным оборудованием являются подвесные и мостовые краны.


Подъемно-транспортное оборудование промышленных зданий: а – подвесной кран; б – мостовой кран; 1 — грузовая лебедка; 2 — монорельс; 3 — пульт управления; 4 — двутавровая несущая балка; 5 — механизм передвижения;
6 — кабина управления; 7 — мост крана; 8 — тележка с грузоподъемным механизмом; 9 — подкрановый путь

Подвесной кран или кран-балка грузоподъемностью до 5 т обслуживает всю площадь пролета. Кран состоит из двутавровой балки с электроталью, которая при помощи катков перемещается по монорельсам, подвешенным к несущим конструкциям покрытия. Управление краном осуществляется с пола цеха.



Подвесной кран: 1 – электроталь; 2 – двутавровая балка, подвешенная к покрытию;
3 – кнопочные выключатели; 4 – двутавровая ездовая балка; 5 – раскосы; 6 – ось подвесной балки


Мостовой кран грузоподъемностью от 5 т до 600 т обслуживает всю площадь пролета. Эти краны обеспечивают перемещение груза в продольном направлении, поперечном и по вертикали. Кран состоит из моста, образованного четырьмя параллельно расположенными фермами (общая ширина 5,5 м), который передвигается по рельсам, уложенным на подкрановых балках. По верху моста крана передвигается тележка с грузоподъемным механизмом. Управление краном осуществляется из кабины, подвешенной к мосту крана.


Мостовой кран 1 – кабина крановщика; 2 – подкрановая балка; 3 – троллейные провода;
4 – тележка крана с лебедками; 5 – стальные фермы моста; 6 – крюк; 7 – бегунки моста; 8 – связи между фермами
Лестница с посадочной площадкой: 1 – кабина мостового крана; 2 – посадочная площадка; 3 – лестница

Основными объемно-планировочными параметрами здания являются:

  • шаг, т.е. расстояние между разбивочными осями поперечных рядов колонн или стен, маркируется цифрами и равен 6, 9 и12 м.
  • пролет, т.е. расстояние между разбивочными осями продольных рядов колонн или стен, маркируется буквами и равен 9, 12, 18, 24, 30,36 м и т.д.
  • высота, т.е. расстояние от уровня чистого пола до низа главного элемента покрытия и может быть — 3,6; 4,2; 4,8; 5,4; 6; 6,6; 7,2; 8,4; 9,6; 10,8; 12; 12,6; 13,2; 14,4; 16,2; 18 м.
  • сетка колонн , т.е. совокупность расстояний между колоннами в продольном и поперечном направлениях 6 х 6, 6 х 9 м.


Известная триада Витрувия определяет архитектуру — как пользу, прочность и красоту. Производственные здания не являются исключением.

Понятие пользы при их проектировании может быть переведено как влияние технологических факторов, а именно технологии производства, технологического оборудования и транспортных средств. Именно эти три фактора, выдвигающие свои, иногда довольно жесткие требования, открывают перечень всего, что определяет объемно-планировочную организацию производственного здания.

Принимая во внимание существование в производственных объектах двух систем – машины и человека, первостепенное значение этих трех факторов становится понятным и объяснимым. Действительно, многие здания для разных процессов изначально предопределены быть многоэтажными, как, например, элеваторы, где вся технология разворачивается по вертикали и для перемещения зерна используется сила гравитации. Башня элеватора имеет четко заданные параметры и на сегодняшний день ее высота достигает 60 м. Такое же вертикальное развитие имеют корпуса обогатительных фабрик, где добываемая порода путем самостоятельного перемещения по наклонным связям проходит последовательно через разные операции, и в результате повышается процентное содержание в ней необходимого сырья.

В то же время сборочные корпуса в автомобильной промышленности, там, где используется конвейер, располагаются в распластанных протяженных объемах. Представить их многоэтажными, с преобладанием вертикальных размеров над горизонтальными, просто нельзя. Горизонтальное развитие имеют и гидроэлектростанции, пространственное построение которых также жестко определено технологическим процессом.

Влияние приведенных трех факторов может быть неравнозначно. Иногда главным для формообразования здания является технология производства. Убедительным примером здесь служит доменная печь, как техническое сооружение металлургического комбината. Ее форма и размеры во многом обусловлены процессом выплавки металла.

В ином случае на первый план выходит используемое технологическое оборудование. Например, в производстве прокатного металла применяются такие громоздкие станки (прокатные станы), что не считаться с ними при разработке архитектурно-планировочного решения корпуса просто невозможно. Цех сушки молока в городе Угличе, Россия, имеет интересную форму двух поставленных друг на друга разных по размерам цилиндров. Такое решение было продиктовано одновременно влиянием технологии выпаривания молока и размерами оборудования, использующегося в этом процессе.

Иногда транспортные средства, применяемые для перемещения продукта или сырья внутри здания, оказывают решающее влияние на выбор его планировочных параметров. Это могут быть всевозможные механизированные устройства (транспортеры, нории) или устройства для передачи материала «самотеком»: пандусы, трубопроводы и пр. Наглядно иллюстрируют влияние транспортных средств на объемно-планировочную структуру здания разные варианты многоуровневых гаражей-стоянок для автомобилей.

К следующей группе факторов, влияющих на объемно-планировочную структуру производственного здания, относятся природно-климатические и градостроительные условия, рассматриваемые при разработке проекта. Особенности места строительства: рельеф, температурно-влажностный режим, преобладающие ветра и т. д. – оказывают влияние на формообразование любого архитектурного объема. Именно эти условия определяют традиционные, региональные подходы к архитектурному проектированию и, соответственно, определяют используемые в этом районе формы, принципы и приемы организации среды.

Интересно совместное влияние природно-климатических и технологических факторов на объемно-планировочную структуру отдельных, специфических объектов промышленной архитектуры.

Возможность использования энергии солнца, решая тем самым вопросы энергосбережения, очень актуальна именно в промышленности, где потребление энергии велико. Существует даже группа производств, которая так и называется – энергоемкие предприятия. Соединение устройств по аккумуляции солнечной, а иногда и ветровой энергии с технологией передачи и использования этой энергии в каком-либо производственном процессе может дать удивительные возможности формообразования.

Для выбора объемно-планировочного решения объектов промышленной архитектуры градостроительные условия важны так же, как и для всех прочих зданий, если предприятие располагается в городе или населенном пункте. А на сегодняшний день около 87 % производственных зданий по своим санитарно-гигиеническим характеристикам могут размещаться и размещаются в границах жилых поселений.

«Выход» производственного здания на главные или второстепенные улицы города, форма занимаемого участка, ориентация основных входов на транспортные магистрали, к остановкам пассажирского транспорта, наличие предзаводской площади со стороны основных подходов к предприятию и пр. – все это принимается во внимание при разработке архитектурно-планировочного решения. Многие производственные здания стали неотъемлемой составной частью застройки городских улиц и площадей, своеобразным ориентиром.

Крупный масштаб производственных зданий, делает их заметными в окружающей застройке иного функционального назначения, но, исходя из градостроительных условий, может быть и визуально уменьшен. Город предъявляет свои требования к архитектурным объектам, и производственные постройки не являются здесь исключением.

Отдельную группу факторов составляют условия труда и организация производства. Условия труда включают такие понятия как температурно-влажностные показатели внутренней среды, освещенность рабочего места, расположение оборудования, обеспеченность санитарно-бытовыми помещениями, состояние внутренней воздушной среды с точки зрения наличия токсичных веществ. Последнее обстоятельство становится очень важным для литейного, химического производств, отдельных видов пищевой промышленности. Оно обусловливает появление специальных помещений для механизмов и устройств очистки воздуха, дезактивации и санитарной обработки рабочей одежды, расширение состава помещений, бытового обслуживания рабочих.

К последней группе факторов относятся строительные материалы, время строительства и время эксплуатации, влияние которых на формообразование более ощутимо именно в производственных зданиях. Утилитарная направленность таких объектов обусловливает отсутствие в промышленной архитектуре функционально невостребованных деталей, в том числе и декора. Здесь многое зависит от пропорций, фактуры поверхностей, формы используемых конструкций.

Поскольку строительные материалы и выполняемые из них конструкции всегда влияли на величину пролета, высоту используемой фермы покрытия, арки, рамы, то они участвовали в формировании объемно-планировочной структуры всего здания.

Сегодня в промышленном строительстве используются разные материалы. Наиболее распространенный железобетон вытесняется осваиваемым как бы заново металлом, из которого выполняют не только несущие, но и ограждающие элементы. Такое использование металла оказывается намного экономичнее, чем применение его в железобетонных элементах. Объясняется это возможностью утилизации металла при реконструкции предприятия, его переплавки и повторного использования, чего нельзя сделать с железобетонными конструкциями. В отечественной архитектурной практике широкое использование легких металлических конструкций началось с 1970-х гг., когда в сочетании с эффективным утеплителем стали изготавливать стеновые панели типа «сандвич». Обладая легкостью и определенным изяществом такие панели, допускающие любую «вырезку» проемов для окон, дверей, ворот, дали новые средства трактовки фасадов, новую пластику и членения.

Со строительными материалами тесно связан вопрос времени возведения и эксплуатации производственного объекта. Существует ряд зданий и сооружений, срок службы которых может закончиться раньше, чем наступит их физический износ. Это объекты добывающей промышленности, ряд перерабатывающих производств. До недавнего времени подобные здания проектировали как временные и, соответственно, их сборность-разборность влияла на архитектурно-планировочную структуру.

Итак, объемно-планировочное решение промышленного здания зависит, прежде всего, от технологического процесса, который происходит в нем. Технологический процесс, в свою очередь, определяется производственно-технологической схемой. Технологическую часть проекта разрабатывают технологи. Задание на строительное проектирование должно содержать такие основные материалы:

  • схему, определяющую последовательность операций производства;
  • план расстановки технологического оборудования, привязанный к унифицированной сетке колонн, с указанием габаритов оборудования, проходов и проездов, технологических площадок, участков складирования, а также подземных сооружений;
  • высотные параметры здания: высоту от уровня пола до низа основных несущих конструкций покрытия для бескрановых зданий и от уровня пола до отметки головки кранового рельса для цехов, оборудованных кранами; высоту этажа для многоэтажных зданий. Кроме того, должны быть указаны отметки рабочих и технологических площадок и этажерок;
  • данные о средствах внутрицехового подъемно-транспортного оборудования;
  • данные о производственных вредных отходах, которые могут выделяться (газы, дым, пыль и др.), и их источниках, а также о необходимом температурно-влажностном режиме в отдельных помещениях;
  • характер работ с точки зрения их санитарной характеристики и степени точности;
  • численность рабочих и административно-управленческого персонала по каждой смене (мужчин и женщин) и в отдельности по санитарной характеристике выполняемых работ;
  • категорию производства по степени пожарной опасности;
  • данные о районе и участке строительства;
  • топографический план территории строительства;
  • материалы гидрогеологического исследования и испытания грунтов;
  • особые условия (сейсмичность, вечная мерзлота, наличие горных выработок и др.).

Наличие этих данных дает возможность приступить к строительному проектированию, основными задачами которого являются:

  • разработка и выбор наиболее рационального объемно-планировочного и конструктивного решение здания в целом и отдельных его элементов с учетом осуществления строительства индустриальными методами. При этом широко используют унифицированные типовые секции (УТС) и унифицированные типовые пролеты (УТП), осуществляют расчеты и обоснования всех изделий и деталей, принимая во внимание район строительства и класс здания;
  • обеспечение требуемой пожарной безопасности в соответствии с установленной степенью огнестойкости здания;
  • создание наиболее благоприятных условий работы (организация рабочих мест, температурно-влажностный режим в помещениях, условия безопасности и гигиены, освещенности);
  • расчет и проектирование административных и бытовых помещений;
  • решение вопросов технологии и организации строительства, его сметной стоимости и вопросов охраны работы и окружающей среды.

Производственные здания должны иметь простую конфигурацию в плане, при этом целесообразно избегать пристроек к корпусу, которые в дальнейшем могут усложнить расширение и реконструкцию производства. Современная практика показывает, что производства с однотипными, а иногда и различными технологическими процессами целесообразно блокировать в одном здании.

Такое объединение не должно противоречить санитарно-гигиеническим требованиям, пожаро- и взрывобезопасности. Современные методы типизации основаны на применении единой модульной системы и сквозной унификации всех строительных параметров зданий и сооружений. Разработки комплексных типовых проектов, типовых проектных решений, чертежей типовых конструкций и изделий, типовых монтажных и архитектурных деталей дают возможность при выполнении конкретных проектов ограничиваться составлением монтажных схем со ссылкой на соответствующие рабочие чертежи типовых конструкций, изделий и деталей. Для каждой области промышленности на этой основе определены оптимальные размеры блоков, из которых можно компоновать производственные здания нужных размеров.

  • размерами в плане 144х72 и 72х72 м с сеткой колонн 24х12 и 18х12 м;
  • высота пролетов бескрановых и с подвесным транспортом грузоподъемностью до 5 т включительно 6 и 7,2 м;
  • высота пролетов с мостовыми кранами грузоподъемностью до 30 т включительно 10,8 и 12,6 м.

Приняты также дополнительные секции. УТС многоэтажных зданий разработаны для зданий в 2, 3, 4, 5 этажей, следует принимать сетку колонн 6х6 и 6х9 м. Высота этажа может быть кратной 1,2 м, в зависимости от технологических условий и габаритов оборудования выбирают 3,6; 4,8; 6,0 м. В пределах одного здания допускается не более двух высот. Одним из важных вопросов при проектировании производственных зданий является организация людских и грузовых потоков и эвакуация людей из здания. Цех надо проектировать так, чтобы люди имели возможность перемещения по кратчайшим, удобным и безопасным путям. Рабочие места должны иметь свободный доступ. Не следует допускать пересечений в одной плоскости напряженных грузовых и людских потоков. В местах неизбежных пересечений предусматривают туннели, переходы и проходы. Для перехода рабочих на другую сторону конвейеров, транспортеров, рольгангов и других движущихся устройств предусматривают переходные мостики.

При проектировании и строительстве производственных зданий обязательно предусматривают пути вынужденной (аварийной) эвакуации людей из помещений. Время эвакуации определяется нормами и зависит от характера производства. Аварийная эвакуация людей из зданий обычно происходит в условиях высоких температур, задымления и загазованности. Для быстрой и безопасной эвакуации людей необходимы достаточное количество выходов, определенная протяженность и ширина путей эвакуации и эвакуационных выходов. При этом учитывают, что время эвакуации зависит от плотности потока, т.е. количества людей (или суммы площади их проекций, м2) на единицу площади (м2), а также длины пути эвакуации. Пути эвакуации должны быть по возможности прямыми и без пересечения другими потоками. Двери на путях эвакуации должны открываться по направлению выхода из здания.

Обычно разрабатывают специальную схему эвакуации людей из здания, а всех работающих в здании люди предварительно оповещают о порядке эвакуации в случае возможных аварийных условиях. Проектируя производственные здания, наряду с технологическими факторами надо учитывать ряд физико-технических вопросов, играющих при эксплуатации здания исключительно важную роль. К ним относятся вопросы: строительной теплотехники, вентиляции, в том числе аэрации; освещенности, борьбы против чрезмерной инсоляции; борьбы со снежными заносами; изоляции от агрессивных воздействий; борьбы с производственными шумами и вибрацией. При чрезмерной инсоляции, когда прямые и отраженные солнечные лучи, попадая в глаза, мешают работе и бывают причиной травматизма, а также, нагревая облученные поверхности, вызывают перегрев помещений, ориентированных соответствующим образом, или здания в целом предусматривают устройство остекленных поверхностей или применяют конструктивные меры против инсоляции. Важным вопросом является защита конструкций от агрессивных химических воздействий путем рационального выбора материалов, а также окраски специальными составами.

Шумы и вибрации, которые возникают от работы машин и транспорта, вредно отражаются на организме человека, снижают его трудоспособность и могут вызывать деформации в конструкциях здания. Основными мерами борьбы при этом являются:

  • установка оборудования на самостоятельных, обособленных от конструкций здания опорах и фундаментах;
  • устройство под машинами в толщи фундамента упругих прокладок и «экранов» из шпунтованных свай или траншей, засыпанных рыхлым материалом; надежная изоляция помещений с значительными сотрясениями и вибрациями от других помещений и их размещение на первых этажах или в крайних пролетах и др.

Как уже отмечалось, промышленные здания проектируют на основе УТС и УТП. Типовые проекты привязывают к конкретным условиям строительства. Проектирование производственных зданий имеет две стадии: проектное задание и рабочие чертежи. Привязку основных конструкций зданий к координационным осям делают с соблюдением правил, изложенных дальше.

Разработанный проект может отвечать всем действующим нормам, каталогам и ГОСТам, а также указаниям по проектирования промышленных зданий.

В промышленных зданиях целесообразно применение сборного ж/б каркаса. Если в соответствии с технологическим процессом необходимо увеличить высоту, то конструкции каркаса выполняют из металла.

Одноэтажные здания могут иметь в плане простые и сложные формы. Одноэтажные промышленные здания предназначены для производств с горизонтальными схемами технологического процесса (например, тяжелое машиностроение). В основном преобладает прямоугольная форма, а сложные формы характерны для производств со значительными тепло- и газовыбросами, если нужна организация притока и удаления воздуха.


Конструктивное решение одноэтажного многопролетного промышленного здания:

1 — бетонный подлив для опоры фундаментных балок; 2 — подкрановая балка; 3 — колонна среднего ряда; 4 — подстропильная железобетонная ферма; 5 — железобетонная безраскосная ферма; 6 — железобетонная плита покрытия; 7 — пароизоляция; 8 — слой утеплителя; 9 — цементная стяжка; 10 — многослойный рубероидный ковер; 11 — конструкция остекления; 12 — стеновая панель; 13 — цокольная стеновая панель; 14 — колонна крайнего ряда; 15 — металлическая крестовая вертикальная связь между колоннами; 16 — железобетонная фундаментная балка; 17 — железобетонный фундамент под колонну

Одноэтажные здания являются сегодня самым распространенным типом производственных зданий как в нашей стране, так и за рубежом. Примерно 70 % из построенных зданий для производства в бывшем СССР относилось к этому типу. В странах Западной Европы 80 % ежегодно вводимых производственных зданий сегодня выполняются одноэтажными.

В таком здании можно разместить практически все технологические процессы. Более того, некоторые из процессов нельзя размещать ни в каком ином типе производственных зданий, кроме как в одноэтажном. Это процессы с тяжелым оборудованием, большие нагрузки которого должны передаваться непосредственно на грунт. К достоинствам такого производственного здания относится возможность размещать тяжелое оборудование. Расположение оборудования в одной плоскости обеспечивает простые и надежные технологические связи.

Экономически такие связи наиболее выгодны, поскольку горизонтальный транспорт (напольный, подвесной, крановый) относится к самым дешевым. Несомненным преимуществом одноэтажного здания является также и возможность его верхнего естественного освещения через фонари покрытия, что дает равномерный уровень освещенности внутренней среды. Главным же недостатком этого типа здания следует признать трудности архитектурно-художественного плана. Плоские, протяженные, имеющие небольшую высоту и значительные размеры в плане объемы нелегко вписываются в городскую среду; непросто решаются композиционные вопросы, достижение выразительности облика, его индивидуальности. К недостаткам архитектурно-художественного плана добавляются сложности строительства и эксплуатации. Большие по площади одноэтажные здания требуют ровных, практически без уклона площадок (до 3 %), найти которые в населенном пункте и даже в его пригородах достаточно трудно. Большие поверхности наружных стен и покрытия приводят к теплопотерям и повышенным расходам на отопление. Тем не менее, недостатки одноэтажного здания могут быть устранены мастерством архитектора и использованием дополнительных источников и средств энергосбережения.

По характеру застройки одноэтажные здания подразделяются на два подтипа: павильонной и сплошной застройки. Первая характеризуется тем, что здание представляется одним, мало расчлененным объектом.

Вторая, павильонная , застройка отличается изрезанной формой плана. Здание состоит как бы из отдельных частей (павильонов), соединенных переходами. Такие строения применяются для производств, технологический процесс которых неоднороден по микроклиматическим, санитарно-гигиеническим, пожаро-, взрывоопасным или прочим условиям (например, в химической, микробиологической промышленности, где требуется большая изоляция отдельных цехов).



Производственное здание с внутренним грузовым двором: а – транзитный грузопоток; б – тупиковый грузопоток; 1 – производственное помещение; 2 – административные помещения; 3- санитарно-бытовые помещения; 4 – лаборатории; 5 – подсобно-производственные помещения; 6 – КПП; 7 – людские потоки; 8 – приемный холл; 9 – грузовой поток; 10 – дебаркадер-экспедиция

Производственное здание с внутренним грузовым двором: 1 – производственное помещение; 2 – административные помещения; 3 — санитарно бытовые помещения; 4 – лаборатории; 5 – подсобно-производственные помещения; 6 – КПП; 7 – людские потоки; 8 – приемный холл; 9 – грузовой поток; 10 – дебаркадер-экспедиция


Производственное здание с внутренним грузовым двором и объединенным КПП: 1 – производственное помещение; 2 – административные помещения; 3 — санитарно-бытовые помещения; 4 – лаборатории; 5 – подсобно-производственные помещения; 6 – КПП; 7 – людские потоки; 8 – приемный холл; 9 – грузовой поток; 10 – дебаркадер-экспедиция; 11 – зеленые ограждения

Производственное здание с внешним грузовым двором и раздельным КПП: 1 – производственное помещение; 2 – административные помещения; 3 — санитарно-бытовые помещения; 4 – лаборатории; 5 – подсобно-производственные помещения; 6 – КПП; 7 – людские потоки; 8 – приемный холл; 9 – грузовой поток; 10 – дебаркадер-экспедиция

П- и Ш-образные или гребенчатые здания используются для кузнечных цехов, Т-образные – для литейных (их тоже относят к павильонным). Наличие данной формы объясняется необходимостью изолировать технологические операции, приводящие к значительным шумовым, вибрационным и тепловым выделениям, а также загазованности среды.

В зданиях павильонной застройки естественное освещение часто ограничивается боковыми оконными проемами, которые не только экономичнее и проще в эксплуатации, чем фонари покрытия, но и обеспечивают визуальную связь с окружающей средой, что требуется для формирования среды, в психофизиологическом отношении нормальной для работающих. Павильонная застройка имеет преимущества в архитектурно-композиционном плане. Большой распластанный объем в данном случае членится на отдельные составляющие, иногда разные по высоте, восприятие которых с учетом неодинаковой приближенности частей формирует более интересное, пластичное целое.

В итоге выбор того или другого подтипа одноэтажного здания (сплошной или павильонной застройки) зависит от ряда технологических, технических, природно-климатических факторов, а также оценивается, исходя из соображений экономичности строительства и эксплуатации. Наиболее распространена павильонная застройка для предприятий химической и нефтехимической промышленности и для отдельных корпусов металлургических и машиностроительных заводов.

Решение конструкций покрытий одноэтажного производственного здания с верхним освещением: а – с квадратной сеткой колонн; б – с шахматной сеткой колонн


Основные типы одноэтажных промышленных зданий: а – однопролетное бесфонарное; б- многопролетное с фонарями; в – то же с плоским покрытием; г – общий вид здания

В зависимости от характера технологического процесса одноэтажные здания по объемно-планировочному решению могут быть пролетного, зального, ячейкового и комбинированного типа.

Здания пролетного типа проектируют в тех случаях, если технологические процессы направлены вдоль пролета и обслуживаются кранами или без них.

Основными конструктивными элементами современного одноэтажного пролетного промышленного здания являются: колоны, которые передают нагрузки на фундаменты; конструкции покрытия, которые состоят из несущей (балки, фермы, арки) и ограждающей (плиты и элементы покрытия) части; подкрановые балки, которые устанавливают на консоли колонн; фонари, которые обеспечивают нужный уровень освещенности и воздухообмен в цехе; вертикальные ограждающие конструкции (стены, перегородки, конструкции остекления), причем конструкции стен опираются на специальные фундаментные и обвязочные балки; двери и ворота для движения людей и транспорта; окна, которые обеспечивают необходимый световой режим.

Виды шедовых конструкций с одним шедом в пролете

Конструктивные решения шедовых покрытий с двумя шедами в пролете

Примерные решения шедовых конструкций

Одноэтажные промышленные здания проектируют чаще всего в каркасной системе, образованной стояками (колоннами), вмонтированными в фундамент, и ригелями (фермами или балками). Специальные связи (горизонтальные и вертикальные) обеспечивают пространственную жесткость каркаса.

Габариты сборных элементов для промышленных зданий унифицированы, и соответственно унифицированы габариты конструктивных элементов на основе укрупненного модуля. Пролет зданий (поперечное расстояние между колонами) принимают 12, 18, 24, 30 , 36 м и др.

Высота от пола до низа несущей конструкции покрытия устанавливают кратной модулю 0,6 м (от 3,6 до 6,0 м), укрупненному модулю 1,2 м (от 6,0 до 10,8 м) и модулю 1,8 м (от 10,8 до 18,0 м).

По размещению внутренних опор одноэтажные здания также разделяют на пролетные, ячейковые, зальные .


Одноэтажные промышленные здания: а – ячейковые; б – зальные без промежуточных опор; в – зальные с центральной опорой

Конструктивные решения покрытия ячейковых одноэтажных производственных зданий: а – с призматическим профилем крыши; б – с криволинейным профилем

Конструктивные схемы одноэтажных промышленных зданий


Здания зального типа применяют тогда, когда технологический процесс связан с выпуском крупногабаритной продукции или установкой большеразмерного оборудования (ангары, цеха сборки самолетов, главные корпусы мартеновских и конверторных цехов и др.). Пролеты зданий зального типа могут быть 100 м и более.

Развитие и внедрение средств автоматизации и механизации технологических процессов создает потребность передвижения транспортных средств в двух взаимно перпендикулярных направлениях. Необходимость частой модернизации технологического процесса легко осуществима в одноэтажных зданиях сплошной застройки с квадратной сеткой колонн. Такое объемно-планировочное решение получило название ячейкового, а здания – гибких, или универсальных.

В зданиях комбинированного типа сочетаются основные признаки зданий зального, пролетного или ячейкового типа.

Пролетный подтип обеспечивает хорошие технологические связи, однако только вдоль пролета. Весь технологический процесс выстраивается последовательно, цепочкой, от одного пролета к другому. Потому пролетные здания хорошо приспособлены для конвейерного производства.

Использование мостового крана, передающего нагрузки непосредственно на грунт, позволяет здесь работать с достаточно тяжелыми изделиями. Примерно 35 % всех одноэтажных пролетных зданий оснащено мостовыми кранами, 15 % – подвесными. Этот подтип незаменим для производств тяжелого машиностроения, выпускающих турбины, большегрузные автомобили, крупногабаритные станки и пр.

Пролеты могут располагаться как в одном, так и в разных направлениях, иметь одну или разную ширину и высоту. Ограничением является величина перепада высот пролетов меньше 1,8–2,4 м. При меньшем перепаде все пролеты выравниваются во избежание образования снегового мешка. Разновысокие и расположенные взаимно перпендикулярно пролеты часто применяются при введении железнодорожного транспорта в здание. Такой пролет имеет другие линейные размеры и устраивается, как правило, с краю, не внутри здания

Число пролетов не ограничивается, однако большое их количество ведет к чрезмерной площади здания, что вызывает сложности при строительстве и эксплуатации.

Схемы пролетного (а), ячейкового (б) и зального (в) типов одноэтажного производственного здания

Для перекрытия пролетов используются различные конструкции, наиболее часто – фермы разных очертаний. Возможно применение и шедового покрытия. Абрис кровли может быть как плоским, простым, так и более сложным. Форма покрытия для одноэтажного здания играет существенную роль при формировании его внешнего облика. Часто именно линия кровли, выразительная, напряженная, может выделить довольно большое и в то же время относительно невысокое производственное здание из окружающей застройки, сделать его интересным и запоминающимся.

Верхний свет в здании устраивается расположенными вдоль пролета линейными либо точечными зенитными фонарями. Световые фонари способны быть одновременно и аэрационными, обеспечивая естественную вентиляцию корпусов. Довольно часто это используется в цехах с большими тепловыделениями – кузнечных, литейных. Нагретый воздух вместе с вредными газами, парами и аэрозолями поднимается вверх естественным образом и без дополнительных затрат удаляется через светоаэрационные фонари.

Размеры пролетов выбираются в зависимости от технологии производства, выпускаемой продукции, используемых станков и оборудования, и бывают 12, 18, 24, 36 и более метров. Известный завод Атоммаш в России, производящий турбины для атомных электростанций, имеет пролет 42 м, оснащенный мостовыми кранами грузоподъемностью 1200 т.

Ячейковый подтип одноэтажного здания появился в 1940-х гг. в связи с необходимостью усложнить поточное движение производственной цепочки, перейти от однонаправленного перемещения технологического потока к движению потока в двух, взаимоперпендикулярных направлениях. Этот подтип характеризуется квадратной или близкой к нему сеткой колонн; несущими конструкциями покрытия являются взаимопересекающиеся балки, фермы, коробчатые настилы, грибовидные монолитные или сборные перекрытия (сетка колонн – 12x×12, 15×15, 18×18, 24×24 м). Одним словом, возможно любое сочетание конструктивных элементов, работающее в двух направлениях.

Мостовые краны здесь не используются, их заменяют всевозможными подвесными устройствами, кран-балками, подвесными конвейерами. Отличие этих механизмов от мостовых кранов заключается в передаче нагрузки на грунт через конструкцию перекрытия, а не непосредственно, как это происходит с мостовым краном. Поэтому грузоподъемность таких устройств значительно ниже.

Возможность передвигаться по технологической цепочке в обоих направлениях позволяет иметь внутри здания более гибкое производственное пространство, легко перестраивающееся, изменяющееся. Поэтому здания ячейковой структуры используют, прежде всего, для производств, технологический процесс которых довольно часто претерпевает изменения, например, на предприятиях электронной промышленности, приборостроения. Преимущества более гибкого внутреннего пространства способствуют также широкому распространению этого типа зданий в отраслях промышленности, не требующих больших пролетов и оборудования большой грузоподъемности.

Зальное здание представляет собой практически однопролетное строение с очень большим пролетом. Перекрывают такой пролет фермы, арки, своды, ванты, пространственно-стержневые структуры или их сочетания. Основная цель применения большепролетных и довольно дорогих конструкций – создание внутри свободного безопорного пространства, необходимого для производств с крупногабаритным оборудованием или выпускаемой продукцией. Ангары для самолетов, цехи прокатки металла, сборочные корпуса машиностроительных заводов – вот основные области применения зального одноэтажного здания. В то же время часто можно встретить этот тип здания на малых производствах, где объемы невелики, конструкция перекрытия имеет небольшой пролет (не более 24–36 м) и потому относительно недорогая. Так, станцию технического обслуживания, выполненную в зальном варианте, отличают хорошие условия организации внутренней среды, свободное передвижения автомобилей, переоборудования и переоснащения постов.

Внутреннее пространство одноэтажных зданий (пролетных, ячейковых, зальных) зонируется по вертикали и горизонтали. Горизонтальное зонирование включает выделение зон основного производства, обеспечения производства вентиляционных и энергетических установок, складов и обслуживания рабочих (бытовые помещения). Все эти зоны размещаются параллельно друг другу вдоль или поперек здания (продольное или поперечное горизонтальное зонирование). Планировочные зоны разделяются между собой проездами, которые выполняют роль проходов для людей и путей перемещения напольного транспорта. В связи с этим их ширина может достигать 3–4,5 м.

Проезды – основные горизонтальные коммуникации одноэтажного здания. Их система становится главной в планировочной организации внутреннего пространства, размещении всех цехов и участков производства. Проезды – своеобразный планировочный каркас здания, от которого зависит рациональное устройство его внутренней среды. В то же время проезды изымают производственные площади здания – площади, обеспечивающие выпуск продукции, – и, соответственно, экономические показатели предприятия – стоимость эксплуатации материальных фондов, их окупаемость, стоимость выпускаемой продукции и пр. Поэтому система проездов должна быть рациональной, технологически и технически обеспечивать оптимальную организацию внутреннего пространства здания с минимальной длиной пути перемещения транспорта.

Вертикальное зонирование заключается в использовании нескольких уровней внутри одного этажа. Верхний уровень, зона перекрытия, предназначается для размещения инженерного оборудования в виде открытых установок или в виде надстроек на крыше; здесь проходят также технологические и технические коммуникации. Их прокладка осуществляется в межферменном пространстве либо в каналах и полостях специальных несущих конструкций – коробчатых настилов, пустотелых балок коробчатого сечения и пр.

Внутри здания возможно устройство антресолей, предназначенных для размещения оборудования как основного, так и вспомогательного производственных процессов. Здесь также можно располагать склады и бытовые помещения для работающих.

Нижний уровень иногда представлен подвалом, в котором могут размещаться установки первичной очистки выбросов, отдельное вспомогательное оборудование, склады и даже бытовые помещения.

Все участки, цехи и сопутствующие помещения размещают в соответствии с технологической схемой производства; желательно, чтобы каждый из них выходил одной или несколькими сторонами на проезды. Помещения с взрывоопасными процессами располагают у наружной стены, не внутри здания.

Производственные цехи и прочие помещения в одноэтажном здании выделяются перегородками, часто не доходящими до низа покрытия. Конструкция же покрытия, как правило, не скрывается подвесным потолком. Исключение составляют некоторые производства пищевой промышленности и микробиологии, где требуется чистая поверхность стен и потолка во избежание оседания пыли и прочих, вредных для процесса или выпускаемой продукции веществ. Высота этажа одноэтажного здания считается от отметки чистого пола до низа несущих конструкций покрытия и бывает кратна 0,6 м или 1,2 м – 4,2; 4,8; 6 м и более до 30 м.

Пространство внутри одноэтажного здания человек воспринимает как единое, цельное, причем это пространство наполнено множеством технических элементов, движущихся в разных направлениях, стучащих и гремящих. Высота этого пространства намного меньше его размеров в плане. Все это способно вызывать специфические психические реакции у находящегося в помещении, а тем более занятого на производстве человека. Поэтому особого внимания архитектора требует разработка интерьеров цехов и помещений. Формирование комфортной среды достигается специальным применением цвета, выбор которого зависит в большой мере от характера технологического процесса – горячие или холодные цехи. Иногда архитектор умышленно завышает высоту одноэтажного здания, чтобы у находящихся внутри людей не формировался эффект сдавливания, тяжести нависающего перекрытия.

По конструктивной схеме одноэтажные здания бывают:

  • каркасные с полным каркасом , которые представляют собой систему колонн, связанную с покрытием;
  • каркасные с неполным каркасом , которые имеют наружные несущие стены и внутренние опоры в виде колонн или кирпичных столбов;
  • бескаркасные, которые имеют наружные несущие стены, усиленные пилястрами;
  • шатровые , которые не имеют вертикальных опор и наружных стен, а покрытия опираются на фундамент.



Конструктивные типы одноэтажных промышленных зданий: а – каркасный; б – бескаркасный; в – с неполным каркасом;
г – шатровый; 1 – наружная стена; 2 – колонна; 3 – ферма; 4 – плиты покрытия; 5 – подкрановая балка; 6 – несущая стена;
7 – балка покрытия; 8 – пилястра; 9 – фундамент; 10 – арка; 11 – покрытие по верху арки

В практику строительства все шире внедряются прогрессивные методы возведения зданий, увеличивается заводская готовность строительных конструкций, применяются новые материалы и облегченные конструкции, снижается себестоимость строительства, улучшается его качество. Все это требует применения типового проектирования.

Конструктивные схемы ячеек одноэтажных промышленных зданий

Часть площади производственного здания между четырьмя смежными стойками называется ячейкой (а ); одна сторона ячейки равна шагу стоек, а другая - пролету. Ячейка может быть в плане прямоугольной (а, б ) или квадратной (в ).

1 – фундамент; 2 – наружная колонна; 3 – подстропильная ферма; 4 – ферма покрытия; 5 – плита покрытия; 6 – внутренняя колонна; 7 – стропильная ферма; 8 – панель ограждения; 9 – жесткий пояс пространственного покрытия; 10 – пространственное покрытие

Типовое проектирование позволяет многократно применять опробованные и экономически выгодные объемно-планировочные и конструктивные решения промышленных зданий. При этом типизация зданий неразрывно связана с унификацией его конструктивных элементов, т.е. с ограничением выбора и применением единообразных по форме и размерам строительных конструкций, изготовляемых индустриальными методами.

Приемы компоновки производственных площадей: а – решение-аналог; б – новое решение

Зонирование площадей здания по функциональному назначению: а – поперечное; б – продольное; в – комбинированное; 1 — грузоразгрузочная рампа; 2 – склады; 3 – технические помещения; 4 — коммуникации; 5 – санитарно-бытовые помещения; 6 – конторы

Варианты размещения светопроемов на крыше ОПЗ

Типовые и унифицированные детали и конструкции, хорошо зарекомендовавшие себя в эксплуатации, включены в каталоги типовых изделий и обязательны для применения. Существует «Каталог типовых индустриальных железобетонных и бетонных изделий», в который включены следующие сборники: К-1 «Одноэтажные здания»; К-2 «Многоэтажные здания»; К-3 «Инженерные сооружения».

На основе этого каталога проектировщиками определены оптимальные размеры блоков, из которых можно компоновать производственные здания необходимых размеров для вполне определенного вида производства. Например, для цехов механосборочного производства на заводах авиадвигателестроения приняты следующие типы основных секций зданий:

  1. Размеры в плане – 144×72 и 72×72 м с сеткой колонн 24×12 и 18×12 м;
  2. Высота пролетов бескрановых и с подвесным транспортом грузоподъемностью до 5т – 6 м и 7,2 м;
  3. Высота пролетов с мостовыми кранами грузоподъемностью до 30т – 10,8 м и 12,6 м.

Помимо основных секций зданий приняты и дополнительные секции для поперечных пролетов. В некоторых случаях компонуют здания с разнообразными объемно- планировочными решениями. На рис. 2.3 в качестве примера приведены схемы компоновки зданий из унифицированных типовых секций.

Применяют в легкой, пищевой, электротехнической и других видах промышленности.

По конструктивной схеме многоэтажные промышленные здания бывают с неполным каркасом и несущими внешними стенами или с полным каркасом (рис.12.4). Основными элементами каркаса являются колонны, ригели, плиты перекрытий и связи. Междуэтажные перекрытия выполняют из сборных железобетонных конструкций двух типов: балочные и безбалочные.

Конструктивное решение многоэтажного здания:

1 — колонна; 2 — монтажный столик для опоры стеновых панелей; 3 — вертикальная металлическая портальная связь между колоннами; 4 — балка (ригель); 5 — плита перекрытия железобетонная ребристая; 6 — железобетонная подкрановая балка; 7 — железобетонная двухскатная балка покрытия; 8 – железобетонная плита покрытия; 9 — стеновая панель; 10 — конструкции оконного остекления; 11 — отмостка; 12 — фундаментная балка (ранд-балка); 13 — бетонный прилив для опирания фундаментных балок; 14 — песчаная подготовка

Сборные каркасы могут быть решены по рамной, рамно-связевой или связевой системе. При рамной системе каркаса пространственная жесткость здания обеспечивается работой самого каркаса, рамы которого воспринимают как горизонтальные, так и вертикальные нагрузки. При рамно-связевой системе вертикальные нагрузки воспринимаются рамами каркаса, а горизонтальные — рамами и вертикальными связями (диафрагмами). В случае связевой системы вертикальные нагрузки воспринимаются колонами каркаса, а горизонтальные -вертикальными связями.

Сетку колонн многоэтажных зданий принимают 6х6 или 6х9 м, в последнее время разработаны проекты с сеткой 6х12, 6х18 и даже 6х24 м.

Высоты этажей многоэтажных производственных зданий унифицированные и могут быть 3,6; 4,8; 6,0 м, для первых этажей допускается высота 7,2 м (модуль 12 м).

Для вертикального транспорта в многоэтажных зданиях предусматривают грузовые и пассажирские лифты, которые вместе с лестницами объединяются в узлы.


При выборе конструктивных решений промышленных зданий необходимо иметь в виду экономическую значимость стоимости отдельных конструктивных элементов в общей сметной стоимости здания. Для многоэтажных зданий наибольшее влияние на стоимость оказывают стены, каркас, полы и проемы, в одноэтажных – каркас, конструкции кровли, полы и стены.

Многоэтажные промышленные здания предназначены для производств с вертикальными схемами технологического процесса (легкая промышленность).

По назначению многоэтажные здания подразделяются на производственные, лабораторные и административно-бытовые.
Большинство многоэтажных зданий возводятся каркасными.



Конструктивные типы многоэтажных зданий: а – каркасный; б – с неполным каркасом;
в – с несущими стенами.

Объемно-планировочные решения многоэтажных каркасных зданий: а – массового типа; б – с верхним крановым этажом;
в – с межферменными этажами; г – двухэтажных

По ОПР различают многоэтажные здания:

  • унифицированного типа с сеткой колонн 6 х 6 м или 6 х 9 м, с высотой этажа 3,6; 4,8 м и до пяти этажей;
  • с верхним этажом, оборудованным подвесным или мостовым краном;
  • двухэтажные, в которых тяжелое технологическое оборудование размещают на первом этаже, а легкое на верхнем.

Список использованной литературы

  • Костов К. Типология промышленных зданий/Сокр. пер.с болг. Ц.М. Симеонова: Под ред. Н.Н. Кима. – М.: Стройиздат, 1987.
  • Справочник проектировщика. Архитектура промышленных предприятий, зданий и сооружений/Под. ред. заслуженного деятеля науки и техники РСФСР К.Н. Карташова. – М.: Стройиздат, 1975.

Несмотря на многообразие производств и соответственно объемно-планировочных и конструктивных решений зданий, могут быть выделены некоторые общие принципы этих решений. Среди них, прежде всего, следует выделить блокирование в одном промышленном здании некоторых производственных помещений, обслуживающих один технологический процесс, или некоторых цехов с разными технологическими процессами или даже разных промышленных предприятий.

Опыт проектирования показывает, что с помощью блокирования можно в отдельных случаях уменьшить площадь заводской территории на 30%, сократить периметр наружных стен до 50%, снизить стоимость строительства на 15—20%.

Вместе с тем блокирование, учитывая разные характеристики технологических процессов, может создать определенные трудности в объемно-планировочных и конструктивных решениях зданий, имея в виду возможные различные требования к размерам пространства, к метеорологи-ческому режиму, воздушной среде и пр.

Блокирование на территориях, с относительно неспокойным рельефом, может привести к неоправданному возрастанию объема земляных работ и снижению экономического эффекта. Поэтому блокирование целесообразно в тех случаях, когда характеристики технологических процессов (например, по нагрузкам, требованиям к среде и др.) относительно близки между собой и когда местные условия строительства не вызывают серьезных трудностей (например, по рельефу, размерам территории и пр.).

Следует отметить еще один положительный фактор блокирования — возможность объединения однородных вспомогательных цехов (например, ремонтно-механических, складских и т. п.) разных производственных процессов. Такое объединение дает возможность не только сократить требуемые объемы здания в результате уменьшения вспомогательных площадей, но и уменьшить количество персонала.

Рис.1. Блокирование в одном здании двух предприятий с различной технологией производства - текстильной фабрики и завода электротехнических изделий.

Наряду с блокированием сохраняет свое значение и павильонная застройка, когда она оправдана характером технологического процесса (например, сопровождаемого значительными тепло- и газовыделениями), местными условиями и главное — доказательными экономическими преимуществами.

На основании экономических соображений в промышленности приборостроения получил, например, применение так называемый «модульный принцип» формирования структуры предприятия, согласно которому предприятие состоит из нескольких авто-номных однородных единиц — «технологических модулей», размещаемых в отдельных небольших производственных зданиях (корпусах-модулях).

Экономический эффект достигают за счет введения в эксплуатацию сначала первого корпуса-модуля и получения готовой продукции, а затем последовательно вводимых других корпусов. Таким образом, к окончанию строительства последнего корпуса-модуля, т. е. к моменту окончания строительства предприятия в целом, оно выпускает готовую продукцию во все нарастающем объеме. Следует отметить, что при «модульном принципе» утрачиваются преимущества блокирования.

В решении вопроса о блокировании или применении павильонной застройки существенную роль наряду с перечисленными выше технологическими факторами играет экономика

Выбор этажности представляет собой одну из важных задач, решаемых в процессе проектирования.

Если характеристики технологического процесса допускают с одинаковой степенью целесообразность применения как одноэтажных, так и многоэтажных зданий, выбор этажности здания зависит от местных условий (площади участка, отведенного под строительство, его рельефа, климатических характеристик местности и т. п.), а также от технических и эко-номических показателей.

Следует иметь в виду, что одноэтажные здания позволяют более свободно размещать и перемещать оборудование при модернизации технологического процесса. В них относительно просто решается устройство подъемно-транспортного оборудова-ния и естественного освещения по всей производственной площади цеха. Вместе с тем одноэтажные промышленные здания требуют значительных территорий, которые, бывает часто трудно выделить по условиям застройки города, а с другой — городские территории имеют большую ценность в связи с наличием элементов благоустройства (дороги, подземные коммуникации и т. п.) и перспективами дальнейшего развития города. Строительство одноэтажных промышленных зданий в загородной зоне влечет за собой сокращение нередко ценных сельскохозяйственных угодий.

Следует иметь в виду, что в многоэтажных зданиях общая площадь всегда на 15—20% выше, чем в одноэтажных, за счет устройства лестниц, подъемников, большого числа других коммуникационных помещений. Поэтому при выборе этажности основным критерием считают экономические показатели, получаемые на основании сравнения вариантов возможных ре-шений, если какие-либо из технологических требований не определяют заведомо этажность.

Наконец, следует выделить принцип унификации решений зданий, который преследует получение относительно лучшего объемно-планировочного и конструктивного решения, способствует повышению гибкости или универсальности объемно-планировочных и конструктивных решений промышленных зданий, что имеет большое значение для ускорения научно-технического прогресса.

Повышение универсальности или гибкости производственных зданий достигают прежде всего в результате освобождения пространства, например, за счет увеличения сетки колонн и в необходимых случаях за счет повышения высоты помещения (в чистоте). Повышение универсальности также достигают некоторыми конструктивными мероприятиями, например, устройством в одноэтажных промышленных зданиях по всей его площади усиленного пола, допускающего установку оборудования в любом месте помещения без устройства специальных фундаментов.

Преследуя повышение универсальности, нельзя забывать об экономической стороне дела. Например, увеличение сетки колонн может привести к повышению стоимости конструкций покрытия из-за увеличения пролета или шага вертикальных опор. Поэтому, принимая то или иное решение, учитывающее условия повышения универсальности здания, необходимо проверить его экономическую эффективность.

Как указывалось, целесообразное решение промышленного здания определяют прежде всего экономичным использованием пространства, т. е. его площадей и объемов для того технологического процесса, для которого оно предназначено. Приблизительно требуемые производственные площади определяют по мощности предприятия на основе укрупненных отраслевых показателей выпуска готовой продукции в тоннах или рублях с I м2 площади. Отраслевые показатели выводят на основе показателей действующих од-нородных передовых в техническом и производственном отношениях предприятий.

При проектировании здания уделяют большое внимание не только рациональному расположению технологического оборудования, удобной транспортировке сырья, полуфабрикатов, готовой продукции и отходов производства, но и правильной орга-низации рабочих мест, обеспечению безопасности и созданию условий труда, отвечающих санитарно-гигиеническим требованиям.

Объемно-планировочное решение должно быть возможно проще по своей форме. Здание прямоугольное в плане с параллельно расположенными пролетами одинаковой ширины и высоты упрощает конструктивное решение, повышает степень сборности конструкций, сокращает число их типоразмеров.

Важный общий принцип объемно-планировочных решений — изоляция вредностей одних производственных помещений от других. Видимое влияние могут оказывать метеорологический режим, состав воздуха, шум, вибрация. Например, производства, технологический процесс которых сопровождается значительными тепло или газовыделениями, размещают в одноэтажных зданиях, при этом ширину и профиль таких зданий назначают с учетом обеспечения эффективной аэрации. Очевидно, при этом может быть предпочтительна павильонная застройка, обеспечивающая надежную изоляцию помещений с нормальным режимом. Производства, при которых в воздух могут выделяться ядовитые газы, пары и пыль в концентрациях, превышающих предельно допустимые нормы, располагают в отдельных помещениях, изолированных от других помещений зданий соответствующими ограждающими конструкциями.

Значительное влияние на объемно-планировочные и конструктивные решения промышленных зданий оказывают природно-климатические характеристики места строительства по тем-пературному и ветровому режимам, по количеству осадков и другим показателям. В суровых климатических условиях предпочтительны, например, здания с меньшей площадью наруж-ных ограждающих конструкций (блокированные, многоэтажные) в целях снижения теплопотерь и. следовательно, повышения экономичности здания в эксплуатации. Повторяемость, скорость и направление ветров, а также закономерности снегопереноса оказывают влияние на выбор профиля покрытия, если предусматривают аэрацию и естественное освещение через фонари. Характеристики светового климата вообще определяют решение естественного освещения, размеры светопроемов и размеры фонарей. Из сказанного следует сделать вывод, что климатические характеристики тщательно выявляют и учитывают при принятии проектного решения.

Значительное влияние на объемно-планировочные и конструктивные решения оказывают требования пожарной безопасности. В соответствии с ними определяют наибольшую допускаемую этажность зданий, требуемую этажность зданий, требуемую степень огнестойкости их конструкций и наибольшую допускаемую площадь этажа между противопожарными пре-градами.

Если позволяет технологический процесс, помещения с производствами, наиболее опасными в пожарном отношении, располагают в одноэтажных зданиях у наружных стен, а в мно-гоэтажных зданиях — на верхних этажах. Из здания на случай воз-никновения пожара предусматривают возможность безопасной эвакуации людей, для чего проектируют эвакуационные пути и выходы.

Эвакуационные выходы для людей не предусматривают через помещения с производствами категорий А, Б и Е, а также через помещения в зданиях IV и V степени огнестойкости.

Категории производств А и Б — взрыво-, пожароопасные производства. Производства категории А характеризуется применением, хранением или образованием в процессе производства горючих газов, нижний предел взрываемости которых 10% и менее к объему воздуха; жидкости с температурой вспышки паров до 28° С включительно при условии, что указанные газы и жидкости могут образовывать взрывоопасные смеси в объеме, превышающем 5% объема помещения; вещества, способные взрываться и гореть при взаимодействии с водой, кислородом воздуха и друг с другом.

Производства категории Б характеризуются наличием горючих газов, нижний предел взрываемости которых более 10% к объему воздуха; жидкости с температурой вспышки паров выше 28 до 61° С включительно; жидкости, нагретые в условиях производства до температуры вспышки и выше; горючие пыли или волокна, нижний предел взрываемости которых 65 г/м3 и менее к объему воздуха, при условии, что указанные газы, жидкости и пыли могут образовать взрывоопасные смеси в объеме, превышающем 5% объема помещения.

Производства категории В характеризуются наличием жидкости с температурой вспышки паров выше 61° С; горючей пыли или волокон, нижний предел взрываемости которых более 65 г/м3 к объему воздуха; веществ, способных только гореть при взаимодействии с водой, кислородом воздуха или друг с другом; твердых сгораемых веществ и материалов.

В качестве эвакуационных выходов используют предусматриваемые для, производственных целей проезды, проходы, лестницы, двери и ворота, за исключением ворот, предназначенных для пропуска железнодорожного транспорта.

Число эвакуационных выходов из каждого помещения должно быть не менее двух. Наружные пожарные лестницы, удовлетворяющие противопожарным требованиям, могут быть ис-пользованы в качестве выходов со второго и вышерасположенных этажей. В зависимости от категории пожарной опасности производства и степени огнестойкости здания расстояние от наиболее удаленного рабочего места до выхода наружу или в лестничную клетку принимают таким, чтобы люди могли покинуть помещение за то время, пока пребывание в нем допустимо, т. е. до тех пор, пока не распространится огонь и продукты горения.

Ширину коммуникационных помещений и дверей на путях эвакуации принимают в зависимости от числа людей, находящихся на наиболее населенном этаже (кроме первого), с таким расчетом, чтобы их пропускная способность полностью обеспечивала эвакуацию в заданное время.. В большинстве случаев конструкции одноэтажных и многоэтажных промышленных зданий выполняют по каркасной схеме. Каркасные системы наиболее рациональны при значительных статических и динамических нагрузках, характерных для промышленных зданий, и значительных размерах перекрываемых пролетов.

Однако при небольших пролетах (до 12 м) и отсутствии тяжелого подъемно-транспортного оборудования вместо каркасных конструкций применяют конструкцию с несущими стенами. Основные конструктивные элементы таких зданий — стены, несущие конструкции покрытия (балки или фермы) и уложенные по ним плиты покрытия. Поскольку в промышленных зданиях обычно отсутствуют внутренние поперечные стены, устойчивость наружных стен достигается устройством пилястр, которые располагают с внутренней или наружной стороны стены, чаще всего в местах опирания несущих конструкций покрытия.

Несущим остовом одноэтажного каркасного промышленного здания служат поперечные рамы и связывающие их продольные элементы.


Рис.2. Основные элементы каркаса одноэтажного промышленного здания. а - общий вид; б - схема устройства подстропильных конструкций; в - схема устройства вертикальных связей в покрытии: 1 - фундамент под колонну, 2 - колонна каркаса, 3 - ригель (балка или ферма), 4 - подкрановая балка, 5 - фундаментная балка; 6 - несущая конструкция ограждающей части покрытия плиты; 7 - подстропильная ферма; 8 - вертикальные связи между колоннами, 9 - вертикальные связи в покрытии; 10 - наружная стена, 11 - оконные переплеты; 12 - — ограждающая конструкция покрытия (пароизоляция, термоизоляция и кровля). 13 - воронка внутреннего водостока.

Поперечная рама каркаса состоит из стоек, жестко заделанных в фундамент, и ригелей (ферм или балок), являющихся несущими конструкциями покрытия, опертых на стойки каркаса.

Подольные элементы каркаса обеспечивают устойчивость каркаса в продольном направлении и воспринимают кроме нагрузок собственной массы продольные нагрузки от торможения кранов и нагрузки от ветра, действующего на торцевые стены зда-ния. К. этим элементам относятся: фундаментные, обвязочные и подкрановые балки, несущие конструкции ограждающей части покрытия и специальные связи (между стойками и между несущими конструкциями покрытия) .

Наружные стены каркасных зданий представляют собой лишь ог-раждающие конструкции и поэтому решаются как самонесущие или навесные. Конструктивная система покрытия может быть беспрогонной или с прогонами. В первом случае по несущим конструкциям покрытия укладывают крупноразмерные плиты (па-нели). Во втором случае вдоль здания укладывают прогоны, а по ним в поперечном направлении — плиты небольшой длины. Беспрогонная схема покрытия по затратам материала более экономична.

При шаге колонн каркаса 12 м и более возникает необходимость устройства подстропильных конструкций, на которые через 6 или 12 м устанавливают ригели (балки) или фермы. В случае, когда отсут-ствует подвесной транспорт и несущей конструкцией ограждающей части покрытия служат железобетонные плиты длиной 12 м, надобность в подстропильных конструкциях при шаге колонн каркаса, равном пролету плит, отпадает.

В некоторых промышленных зданиях, например цехах металлургических заводов, подстропильные конструкции имеют значительные пролеты, в мартеновских цехах, где печи размещены в средней части здания, колонны каркаса среднего ряда распо-лагают с шагом 36 м.


Рис.3. Устройство подстропильных конструкций больших пролетов. а,б - в главном здании мартеновского цеха с печами емкостью 500 т (а - поперечный разрез; б - продольный разрез); в - в прокатном цехе, Р— разливочный пролет. П печной пролет; 1 — разливочный кран грузоподъемностью 350/75/15 т; 2 - заливочный край грузоподъемностью 180/50т; 3 - консольно-поворотный передвижной кран грузоподъемностью Зт; 4 - консольный передвижной кран грузподъемностью 3 т, 5 - шихтовый открылок; 6 - защитный экран, 7 - подкрановые балки. 8 - стропильные фермы; 9 - подстропильные фермы, 10 - отрезки колонн

Подстропильные конструкции выполняют в виде ферм, которые воспринимают либо нагрузку от покрытия, либо нагрузку от мостовых кранов (рис. 7, а).

Подстропильные фермы, перекрывающие пролет 72 м, выполнены по типу стальных мостовых ферм с клепаными соединениями (рис.7. в). В данном случае они воспринимают кроме нагрузки подкрановых балок нагрузки от отрезков колонн, которые вклепаны в подстропильные фермы.

Покрытия с несущими конструкциями в виде железобетонных балок или ферм с уложенными по ним плитами имеют приведенную толщину бетона 80—100 мм при собственной массе (весе) 1 м2 покрытия 200— 250 кг. При такой массе покрытия значительную часть бетона и арматурной стали расходуют на то, чтобы воспринять собственную массу конструкции. Поэтому наряду с этими конструкциями покрытий в настоящее время широко распространены облегченные конструкции с применением металлического профилированного настила с легким утеплителем, укладываемого по прогонам.

Весьма перспективны покрытия в виде тонкостенных пространственных конструкций: оболочек, сводов, складок и др., примеры которых рассмотрены далее. Известны решения про-странственных армоцементных покрытий, масса 1 м которых 45—55 кг, а приведенная толщина оболочки 15— 20 мм.

Многоэтажные промышленные здания проектируют, как правило, с полным сборным железобетонным каркасом и самонесущими или навесными стенами и, в отдельных случаях, с неполным каркасом и несущими стенами. Основные элементы каркаса — колонны, ригели, плиты перекрытий и связи. Междуэтажные перекрытия выполняют из сборных железобетонных конструкций двух типов: балочные и безбалочные.

При безбалочных перекрытиях функцию ригелей выполняют железобетонные плиты, располагаемые по разбивочным осям колонн. Колонны и ригели, соединенные жестко в узлах между собой, образуют рамы каркаса, которые могут располагаться поперек, вдоль или одновременно в обоих направлениях.

Междуэтажные железобетонные перекрытия служат жесткими горизонтальными связями: они распределяют горизонтальную (ветровую) нагрузку между элементами каркаса и обеспечивают совместную пространственную работу всех элементов каркаса здания.

Функцию вертикальных связей выполняют поперечные или продольные железобетонные стены, или крестообразные стальные элементы, устанавливаемые между колоннами, или жесткое ядро, образуемое сочетанием поперечных и продольных железобетонных стен, образующих лестничные клетки, лифты.

Сборные железобетонные каркасы могут быть решены по рамной, рамно-связевой или связевой системе. При рамной системе каркаса пространственная жесткость здания обеспечивается работой самого каркаса, рамы которого воспринимают как горизонтальные, так и вертикальные нагрузки. При рамно-связевой системе вертикальные нагрузки воспринимаются рамами каркаса, а горизонтальные — рамами и вертикальными связями (диафрагмами). При связевой системе вертикальные нагрузки воспринимаются колоннами каркаса, а горизонтальные — вертикальными связями.

Рамно-связевые системы имеют некоторые преимущества по сравнению с рамами, так как упрощаются узловые сопряжения элементов каркаса и их можно унифицировать, достигая неко-торое сокращение расхода стали за счет облегчения закладных деталей в стыках и уменьшения арматуры в колоннах.

В тех случаях, когда поперечные стены или лестничные клетки отсутствуют или расстояние между ними очень велико, а также когда перекрытия ослаблены отверстиями, обеспечить удовлетворительную работу сборного железобетонного каркаса рамно-связевой системы не представляется возможным. В таких случаях применяют сборный каркас рамной системы. В отдельных случаях каркас может быть решен с балочной конструкцией перекрытия и жестким железобетонным монолитным ядром. Ядро на всю высоту здания выполняют в подвижной опалубке.

Требования пожарной безопасности в конструктивных решениях промышленных зданий сказываются прежде всего в устройстве противопожарных преград., т. е. противопожарных стен (брандмауэров, рис. 8, а, б), противопожарных зон (рис. 8 е), а в многоэтажных зданиях — в устройстве несгораемых перекрытий.


Рис.4. Противопожарные преграды. а - поперечная противопожарная стена, б - продольная противопожарная стена, в - противопожарная зона, г - расположение противопожарных преград в плане.

Противопожарные преграды разделяют объем здания на отдельные части, ограничивая при возникновении пожара распространение огня пределами одной части здания. Кроме того, с помощью противопожарных преград выделяют наиболее огнеопасные помещения.

Противопожарные преграды выполняют из несгораемых конструкций. Противопожарные стены располагают поперек или вдоль здания, разделяя междуэтажные перекрытия, покрытия, фонари и другие конструктивные элементы из несгораемых или трудносгораемых материалов. Противопожарные стены устанавливают на самостоятельные фундаменты либо на несущие несгораемые конструкции перекрытий.

Противопожарные стены выполняют выше уровня кровли на 0,6 м, если хотя бы один из элементов покрытия, за исключением кровли, выполнен из сгораемых материалов, и на 0,3 м если все элементы покрытия, за исключением кровли, выполнены из трудносгораемых и несгораемых материалов.

Противопожарные стены зданий с несгораемыми покрытиями могут не разделять покрытий и не возвышаться над кровлей независимо от группы ее возгораемости.

В цехах, оборудованных мостовыми кранами, противопожарные стены располагают только в верхней части здания. Расстояния между противопожарными степами назначают в зависимости от категории пожарной опасности производства. степени огнестойкости, этажности здания и приводятся в строительных нормах и правилах. Устройство проемов в противопожарных стенах не рекомендуется.

Противопожарные зоны устраивают шириной не менее 6 м. Они перерезают здание по всей его ширине. На участках противопожарных зон все конструктивные элементы здания вы-полняют из несгораемых материалов. Если противопожарная зона расположена вдоль здания, то она представляет собой противопожарный пролет, все конструкции которого изготовляют также из несгораемых материалов (рис. 8, г). По краям противо-пожарной зоны устраивают из несгораемых материалов гребни, размер которых принимают аналогично выступам противопожарных стен.

Промышленное здание внутри расчленено конструктивными элементами на отдельные помещения (ячейки). Пространственная часть объема здания, ограниченная размерами по высоте, шагу и пролету, называется объемно-планировочным элементом здания.

Выбор этажности проектируемого здания, высоты этажа, сетки колонн, размеров здания по ширине и длине, компоновка отдельных цехов и отделений, расположение помещений с различным температурно-влажностным режимом называется объемно-планировочным решением здания.

На выбор этажности может оказывать влияние стесненность участка, предложенного для строительства, или принятие вертикальной технологической схемы производства. Отрицательным фактором многоэтажных производственных зданий в мясной промышленности может быть наличие течей в междуэтажных перекрытиях. Критерием выбора этажности в каждом конкретном случае может быть вариантность проработки проектных решений и сопоставление технико-экономических показателей. Во избежание появления в конструкциях трещин от воздействия температурных и осадочных деформаций здание рекомендуется разделять поперечными швами на отдельные отсеки. В зависимости от назначения эти швы называются: температурными, осадочными и деформационными.

5 Вспомогательные здания и помещения

К вспомогательным помещениям в мясной отрасли, относятся: конторские, бытовые, общественного питания, медпункты, культурного обслуживания, для проектно-сметных групп, комнаты для учебных занятий, кабинеты-классы по технике безопасности, помещения для хранения инвентаря, моющих и дезинфицирующих средств.

На средних и крупных предприятиях административные (конторские) и бытовые помещения, как правило, блокируют и связывают с производственными корпусами отапливаемыми переходами. Устройство переходов для работающих в холодильнике не требуется.

Административные и бытовые помещения следует размещать в отдельно стоящих зданиях или пристройках к производственным зданиям, а также во встройках и вставках производственных зданий I-V степеней огнестойкости категорий В1-В4, Г1, Г2 и Д по взрывопожарной и пожарной опасности.

Размещение административных и бытовых помещений строительно-монтажных организаций следует предусматривать в мобильных зданиях, зданиях строящихся объектов и зданиях, подлежащих сносу.

Помещения для мастеров и другого персонала; помещения для отдыха, обогрева или охлаждения; помещения курительных, уборных, умывальных, ручных ванн, полудушей, устройств питьевого водоснабжения и личной гигиены женщин, которые по условиям производства требуется располагать вблизи рабочих мест, допускается устраивать непосредственно в производственных зданиях, размещая их рассредоточенно и выполнять, как правило, из легких ограждающих конструкций, в том числе из сборно-разборных, при этом курительные не допускается размещать в помещениях с производствами категорий А, Б, В1-В3 по взрывопожарной и пожарной опасности, а в зданиях VII и VIII степеней огнестойкости помещения для отдыха, обогрева или охлаждения, а также помещения для мастеров и другого персонала не допускается размещать у наружных стен, на антресолях и площадках.

Высоту помещений от пола до потолка следует принимать не менее 2,5 м, в мобильных зданиях и в помещениях, размещаемых непосредственно в производственных зданиях, - не менее 2,4 м. Высоту залов столовых, залов совещаний и административных помещений вместимостью более 75 чел. следует принимать не менее 3 м.

Высоту от пола до потолка в коридорах, высоту от пола до низа выступающих конструкций перекрытий, а также высоту от пола до низа оборудования и коммуникаций, размещаемых под перекрытиями, следует принимать не менее 2,2 м.

Высота технических этажей определяется в каждом конкретном случае в зависимости от вида размещаемых в них инженерных сетей и оборудования и условий их эксплуатации. Высоту от пола до низа выступающих конструкций в местах прохода обслуживающего персонала следует принимать не менее 1,8 м.

При условии предохранения помещения у входа в здание от попадания атмосферных осадков отметку его пола допускается заглублять ниже планировочной отметки земли.

При входах в здания должны устраиваться приспособления для очистки обуви.

Входы в здания следует предусматривать через тамбуры.

Глубину тамбуров следует принимать более ширины дверного полотна не менее чем на 0,2 м, но не менее 1,2 м, ширину тамбуров следует принимать более ширины дверных проемов не менее чем на 0,15 м с каждой стороны.

Тамбуры при входах, предназначенных для физически ослабленных лиц и инвалидов, должны приниматься глубиной не менее 1,8 м (при движении с поворотом на 90о - не менее 2,2 м) и шириной не менее 2,2 м.

Входные двери для физически ослабленных лиц и инвалидов (в том числе для инвалидов, пользующихся креслами-колясками) должны быть шириной в свету не менее 0,9 м.

Площадь вестибюля следует принимать из расчета 0,2 м2 на одного работающего в наиболее многочисленной смене, но не менее 18,0 м2.

В многоэтажных зданиях уборные, умывальные и душевые следует размещать, как правило, над помещениями такого же назначения.

На каждом этаже здания следует предусматривать кладовые уборочного инвентаря. Площадь этих кладовых следует принимать из расчета 0,8 м2 на каждые 100 м2 площади этажа, но не менее 4,0 м2.

При площади этажа многоэтажного здания менее 400 м2 допускается предусматривать одну кладовую на два смежных этажа.

Сообщение между отдельно стоящими бытовыми зданиями и отапливаемыми производственными зданиями следует предусматривать по отапливаемым переходам.

Отапливаемые переходы допускается не предусматривать в производственные здания с численностью работающих не более 30 чел. в смену. При этом в производственных зданиях следует предусматривать помещения для хранения теплой верхней одежды. Кроме этого, отапливаемые переходы допускается не предусматривать в производственные здания с группой производственных процессов 2г.

Перечень помещений административных и бытовых зданий, размещение которых допускается в подвальных и цокольных этажах, приведен в приложении А.

Во всех административных и бытовых зданиях систему горизонтальных и вертикальных пешеходных и транспортных коммуникаций следует проектировать с учетом возможности использования их физически ослабленными лицами и инвалидами.

В местах перепада уровней пола более 4 см следует предусматривать устройство пандусов. В местах перепада уровней, где невозможно устройство пандуса, следует предусматривать установку лифтов или специальных подъемников, приспособленных для самостоятельного пользования инвалидами на креслах-колясках.

В бытовых зданиях предприятий следует размещать помещения для обслуживания работающих: санитарно-бытовые, здравоохранения и общественного питания.

В соответствии с утвержденными планами социально-экономического развития предприятия или квотой рабочих мест для инвалидов допускается предусматривать не учтенные настоящими нормами помещения или здания социального назначения.

Для расчета площади, оборудования и устройств бытовых помещений в технологической части проекта должны быть установлены следующие численности работающих: списочная, в наиболее многочисленной смене, а также в наиболее многочисленной части смены при разнице в начале и окончании смены 1 ч и более. В численности работающих должно быть учтено количество практикантов, проходящих производственное обучение.

Наиболее многочисленную смену для мобильных зданий допускается принимать равной 70 % списочной, в том числе 30 % женщин.

Минимальные геометрические параметры, расстояния между осями санитарных приборов и ширину проходов между рядами оборудования бытовых помещений, а также между рядами оборудования и стеной или перегородкой следует принимать по таблице 2.

В составе санитарно-бытовых помещений могут быть предусмотрены гардеробные, душевые, преддушевые, умывальные, уборные, курительные, помещения для обогрева или охлаждения, помещения обработки, хранения и выдачи спецодежды, а также в соответствии с ведомственными нормативными документами другие дополнительные помещения санитарно-бытового назначения.

Помещения общественного питания

При проектировании предприятий следует предусматривать помещения (объекты) общественного питания для обеспечения всех работающих на предприятиях общим, диетическим, а в соответствии с заданием на проектирование - лечебно-профилактическим питанием.

При численности работающих в смену более 200 чел. следует предусматривать столовую, работающую на полуфабрикатах или, при обосновании, - на сырье.

При численности работающих в наиболее многочисленной смене до 200 чел. следует предусматривать столовые-раздаточные.

При численности работающих в наиболее многочисленной смене менее 30 чел. допускается предусматривать комнату приема пищи вместо столовой-раздаточной.

Объекты общественного питания следует проектировать с учетом возможности их кооперированного использования группой предприятий, а при размещении в городской застройке или населенных пунктах - с учетом организации обслуживания населения.

В столовых с обслуживанием посетителей, приходящих в уличной одежде, следует предусматривать гардеробные уличной одежды, число мест в которых должно приниматься равным 120 % числа посетителей, приходящих в уличной одежде.

Число мест в столовых следует принимать равным 25 % численности работающих в наиболее многочисленной смене или наиболее многочисленной части смены.

В зависимости от специфики производства и организации труда работающих на предприятиях число мест в столовых допускается изменять.

Площадь комнаты приема пищи следует определять из расчета 1 м2 на каждого посетителя или 1,65 м2 на посетителя-инвалида, пользующегося креслом-коляской, но не менее 12 м2.

Комната приема пищи должна быть оборудована умывальником, стационарным кипятильником, электрической плитой и холодильником.

При численности работающих в наиболее многочисленной смене до 10 чел. вместо комнаты приема пищи допускается предусматривать место площадью 6 м2 для установки стола в общих гардеробных или в гардеробных домашней (уличной и домашней) одежды.

Санитарно-бытовые помещения (тип гардеробных, оборудование, состав специальных бытовых помещений) должны проектироваться в зависимости от групп производственных процессов согласно таблице 3.

Перечень профессий с отнесением их к группам производственных процессов утверждается министерствами и ведомствами по согласованию с Министерством здравоохранения Республики Беларусь и руководящими органами отраслевых профсоюзов.

По обеим сторонам, не примыкающим к стенам лестничного марша или пандуса, на пути передвижения физически ослабленных лиц и инвалидов должны предусматриваться отбойные бортики ограждения в соответствии с требованиями 4.4.

На мелких предприятиях бытовые помещения блокируют непосредственно с производственными зданиями цехов и отдельных производств. Бытовые помещения работают по типу санпропускника. Категорически запрещается размещать душевые кабины, туалеты, прачечные, кухни, столовые и т. п. над помещениями пищевых производств и обеденными залами столовых.

При проектировании бытовых помещений, как правило, используют унифицированные планировочные секции (рисунок 2.8, 2.9).


Рисунок 2.8- Унифицированные планировочные элементы гардеробных (а) и душевых (б) помещений

Рисунок 2.9 - Промышленное здание с административно-бытовым блоком

Славянский консервный завод

Тип: Здания серии Кондор ®

Тип: Здания серии Кондор ®

Размер: 16 700 кв.м.

Славянский консервный завод. Здания для производства томатной пасты, напитков из фруктов и овощей, соусов, повидла, икры и прочих продуктов переработки овощей и фруктов.

Каркас – стальные конструкции,

Кровля, стены – сэндвич-панели системы «Венталл»

Окна, светопрозрачные участки кровли

Ворота – подъемные с электроприводом

Размер: ширина 30 х длина 176 х высота 6

каркас - стальные конструкции, кровля – полистовая сборка, стены – сэндвич-панели с минераловатным утеплителем.

Объемно-планировочное решение промышленного здания определяется требованиями размещаемого в нем производственного процесса. Следовательно, проектированию здания должно предшествовать тщательное изучение технологического процесса, его основных характеристик, особенностей. При этом выявляются последовательность технологических операций и организация производственных потоков, вес и габариты технологического оборудования и изделий, способы транспортировки материалов (вид и фузоподъемность подъемно-транспортного оборудования), наличие производственных вредностей, требования к температурно-влажностному режиму внутреннего воздуха и пр.

Кроме этого, объемно-планировочное решение должно обеспечить возможность реконструкции и модернизации производства, переход на новые виды продукции.

Далее рассматриваются характеристики участка, предназначенного для застройки: рельеф и геологические условия, свободное пространство или затесненный участок в городской застройке, насыщенность инженерными коммуникациями; оцениваются возможные архитектурно-композиционные решения с точки зрения размещения здания на генплане и характера окружающей застройки.

Принимаются во внимание техническая база, наличие тех или иных строительных материалов и конструкций для возведения здания.

В случаях, когда с учетом удовлетворения всего комплекса требований допускается возможность строительства одно- или многоэтажного здания, проводится предварительный технико-экономический сравнительный анализ стоимости и трудовых затрат на возведение здания различных вариантов.

На основе всех этих факторов определяются этажность и рациональные параметры промышленного здания. К примеру, развитие производственного процесса по горизонтали, с использованием крупногабаритного тяжелого оборудования (кузнечно-прессовые цеха, литейное производство и т.п.) предполагают размещение только в одноэтажных зданиях. Вертикальный технологический процесс (переработка сыпучих материалов) или производство мелких изделий на оборудовании с малыми нафузками (электротехническая, пищевая промышленности, приборостроение и т.п.) размещают в многоэтажных зданиях.

При выборе параметров производственного помещения, кроме технологических должны учитываться также санитарно-гигиенические и эргономические требования к единичному рабочему месту. Постоянным рабочим местом считается то место, где работающий находится непрерывно более 2 часов или 50% своего рабочего времени.


Рабочее пространство определяется высотой до 2 м над уровнем площадки, где находится рабочее место. Если в течение рабочего дня работающий обслуживает технологический процесс в разных точках рабочего пространства, то его постоянным рабочим местом считается все это рабочее пространство. Ориентировочные наименьшие санитарно-гигиенические размеры рабочего пространства составляют на 1 работающего: объем - 15 м 3 , площадь - 5 м 2 и высота - 3 м.

При проектировании производственных зданий следует стремиться к компактному объему с простой конфигурацией плана (в основном, прямоугольной). Должны быть по возможности исключены разновысотные пристройки и надстройки, усложняющие очертания разрезов здания.

Этому способствует блокирование в одном здании цехов с однородными производственными процессами, с близкими по размерам и структуре объемно-планировочными элементами. Блокирование позволяет объединить и укрупнить также однородные вспомогательные службы (ремонтные, энергетические, транспортные, склады и пр.). Все эти цехи и участки группируются под одной крышей и занимают весьма значительную площадь. Сблокированные здания образуют достаточно крупные объемы, обладающие определенной архитектурной выразительностью (рис. 24.1, 24.2).

В результате блокирования существенно сокращается количество зданий, экономится (до 30%) площадь промышленного предприятия, упрощаются технологические связи между производственными цехами и участками, уменьшается площадь наружных ограждающих конструкций (стен и перекрытий), снижается (на 15-20%) стоимость строительства.

Блокирование имеет и определенные ограничения в основном связанные с рельефом местности(наличие резких перепадов, овраги и пр.).

Объединяются и помещения обслуживания работающих - санитарно-бытовые помещения, пункты питания, помещения медицинского обслуживания и пр. Определен состав помещений по каждому виду обслуживания и установлены нормативные требования к их проектированию. На предприятии помещения обслуживания, как правило, размещают в специальных зданиях - вспомогательных. Существует два основных типа вспомогательных зданий: отдельно стоящие и пристроенные. Кроме этого, помещения обслуживания могут размещаться в 2-3-этажных зданиях-вставках между пролетами одноэтажного производственного здания или внутри этого здания, в объемных блоках на свободных от оборудования площадях, на антресолях, этажерках и пр. Отдельно стоящие вспомогательные здания, как правило, соединяются с производственным корпусом отапливаемыми переходами (надземными или подземными). Варианты размещения вспомогательных помещений приведены на рис. 24.3.

Вспомогательные здания, в которых преобладают санитарно-бытовые помещения, относят к бытовым или административно-бытовым. Выделяют также здания для одного вида обслуживания (столовые, медицинские пункты, газоспасательные станции, проходные и пр.).

В состав санитарно-бытовых помещений входят гардеробные, душевые, умывальные, уборные, помещения для сушки, обеспыливания и обезвреживания спецодежды, помещения для отдыха и пр. Работающие пользуются бытовыми помещениями на большинстве предприятий после работы, чтобы устранить последствия вредных воздействий производства (загрязнение тела, загрязнение вредными веществами, запыле-ние, увлажнение спецодежды и т.п.). Наряде предприятий с особым режимом для обеспечения качества продукции работающие должны посетить бытовые и пройти санитарные процедуры до начала работы.

Основную площадь бытовых помещений занимает блок гардеробных и душевых помещений (рис. 24.4). Объемно-планировочное решение блока должно обеспечить работающим на предприятии условия комфорта пользования санитарно-бытовыми помещениями и оборудованием при минимальных затратах времени.

На территории предприятия бытовые здания размещают на пути работающих от проходной к производству, обеспечивая удобный подход к ним, с максимальным приближением к рабочим местам (рис. 24.5),

Важным условием эффективного использования территории предприятия и производственных площадей в здании является четкая организация и взаимная увязка грузовых и людских потоков. Эта организация основывается на принципах функционального зонирования, определяющего построение генерального плана предприятия и пространства производственного здания. В здании рассматривается функциональное зонирование объема по горизонтали и по вертикали. Выделяются зоны основного производства, производственно-вспомогательные, инженерно-технических коммуникаций и пр. Технологический процесс рекомендуется строить по кольцевой схеме, размещая «вход» и «выход» по тыльной стороне производственного здания. Тем самым, железнодорожные пути и грузонапряженные автомобильные въезды размещаются с тыльной стороны, в то время, как потоки работающих поступают в корпус через бытовые помещения с лицевой стороны застройки.

С учетом функционального зонирования и направлением грузовых и людских потоков, производственная площадь здания разделяется продольными и поперечными проездами и проходами на отдельные технологические участки

Внутри производственного здания не допускается пересечение грузовых и людских потоков. Следует избегать пересечений грузопотоков и возвратных перемещений грузов.

При застройке территории промышленного предприятия рекомендуется избегать Г- образных, П- и Ш-образных в плане зданий (особенно, многоэтажных), т.к. это приводит к образованию замкнутых и полузамкнутых дворов. В случаях неизбежности строительства таких зданий, они должны быть ориентированы по розе ветров так, чтобы продольная ось дворов располагалась параллельно или под углом до 45° относительно направления господствующих ветров. При этом дворы не застроенной стороной обращают на наветренную сторону. Разрыв между параллельными корпусами должен приниматься равным полусумме их высот, но не менее 15 м. Такой разрыв обеспечит естественное освещение производственных помещений в зданиях.

Промышленные здания в подавляющем большинстве возводятся с использованием в качестве несущих индустриальных каркасных железобетонных или стальных конструкций. При этом, применимы все расчетные схемы каркасов - рамная, рамно-связевая и связевая. Наибольшее распространение получила железобетонная связевая.

Ограждающие конструкции также применяются, главным образом, заводского изготовления (самонесущие и навесные стены из панелей, крупных блоков). Примеры разрезки на панели наружных стен одноэтажных и многоэтажных промзданий приведены на рис. 24.6. Повышению уровня индустриализации строительства способствует разработка и применение комплектных зданий полной заводской готовности из легких металлических конструкций (ЛМК) с эффективным утеплителем.

Размещение колонн каркаса, расстояния между ними в плане, а также высота формируют объемно-планировочную структуру производственного здания. Размеры промышленных зданий принимают на основе модульной системы и общероссийской унификации.

Унификация и типизация осуществляются на основе единой системы модульной координации размеров в строительстве. При проектировании промышленных зданий, с учетом их значительных размеров, пользуются укрупненными модулями: для пролета и шага до 18 м размеры принимают кратно модулям 15М и 30, свыше 18 м - 30М и 60М; для высоты этажа до 3,6 м - кратно модулю 3М, свыше 3,6 м - кратно модулям 3М и 6М.

Унификация в своем развитии последовательно прошла несколько этапов. Вначале, в 50-х годах, она проводилась внутри отдельных отраслей промышленности (отраслевая унификация). Затем, в 60-х гг., были разработаны габаритные схемы зданий межотраслевого назначения (межотраслевая унификация). В последующие десятилетия велись работы по межвидовой унификации, предполагавшей создание габаритных схем и конструктивных решений, общих для зданий различного назначения (например, промышленных и общественных).

Итогом разработки явился каталог унифицированных типовых строительных конструкций и изделий 1.020 - 1, применимых для возведения различных видов зданий, в т.ч., многоэтажных.

Соответственно, унификация осуществлялась в направлении от простого к более сложному и прошла линейную, пространственную и объемную стадии.

На первой стадии (линейной) были унифицированы пролеты, высоты зданий, шаг колонн, нагрузки на конструкции, а также грузоподъемность мостовых кранов. На стадии пространственной унификации осуществлялось обоснованное сокращение числа сочетаний параметров по высотам и сетке колонн. В результате, были получены унифицированные объемно-планировочные элементы, из которых можно было создать множество разнообразных схем производственных зданий для разных отраслей промышленности. Разработаны различные варианты таких элементов: с подвесными и опорными мостовыми кранами, с верхним светом и без него, с внутренним и наружным отводом воды с кровли.

Следует пояснить, что объемно-планировочный элемент (пространственная ячейка) представляет собой часть здания с размерами, равными высоте этажа, пролету и шагу колонн. Его горизонтальная проекция называется планировочным элементом (планировочной ячейкой).


В проекте положение отдельных опор (колонн) фиксируется продольными и поперечными координационными осями. Расстояние между осями колонн в направлении, соответствующем основной несущей конструкции перекрытия(покрытия) здания, называют пролетом. Расстояние между координационными осями колонн в направлении, перпендикулярном пролету, называют шагом. Таким образом, здание характеризуется длиной, шириной, высотой, размерами пролета и шага колонн. Расположение в плане координационных осей определяет сетку колонн, обозначаемую как произведение пролета на шаг: 6x6; 1x6; 36x12 м и т.д. Высота этажа промышленного здания определяется расстоянием от уровня чистого пола до низа основной конструкции перекрытия на опоре (балки, фермы) - в одноэтажном здании и до пола вышележащего этажа - в многоэтажном.

Устанавливаемые в проекте сетки колонн и высоты должны отвечать требованиям технологического процесса и являются одними из главных планировочных параметров производственного здания.

Сетка колонн формирует планировочную структуру здания. Выделяются следующие типы производственных зданий: пролетные, ячейковые, зальные; одноэтажные, многоэтажные, двухэтажные. В отдельную группу можно выделить здания павильонного типа, которые широко используются для химических производств. Внутри павильона, для размещения технологического оборудования, устанавливаются сборно-разборные этажерки, конструктивно не связанные с каркасом павильона. Павильоны проектируют отапливаемыми и неотапливаемыми, одно- и двухпролетными, высотой 10,8-14,4 м, пролетом 18, 24, 30 м и шагом колонн крайних рядов 6 м. Этажерка проектируется с сеткой опор, в основном, 6x6 м (рис. 24.9).

Здания с пролетной структурой используются для размещения производств с постоянным направлением технологического процесса, что обусловило их оборудование соответствующими подъемно-транспортными механизмами - мостовыми и подвесными кранами. Производственные здания могут быть одно- и многопролетными. Пролеты проектируют размерами, кратными укрупненному модулю 15М: 9; 10,5; 12; 13,5; 15; 16,5; 18; 21; 24; 27; 30 м. Шаги колонн принимают размерами 6; 7,5; 9; 10,5; 12; 13,5; 15; 16,5; 18 м.

Высоты этажей принимают от 3 до 18 м с градацией, кратной 3М. Высота одноэтажных зданий(измеряется от пола до низа горизонтальных несущих конструкций на опоре) должна быть не менее 3 м. Высота этажа многоэтажных зданий должна быть не менее 3,3 м. Исключение составляют высоты технических этажей. В помещении высота от пола до низа выступающих конструкций перекрытия (покрытия) должна быть не менее 2,2 м; высота от пола до низа выступающих частей коммуникаций и оборудования в местах регулярного прохода людей и на путях эвакуации устанавливается не менее 2 м, а в местах нерегулярного прохода людей - не менее 1,8 м.

Пролеты располагают в основном параллельно. Существует и перпендикулярное размещение пролетов, но этого следует избегать в связи с конструктивной сложностью выполнения их примыкания.

Ячейковая структура здания характеризуется квадратной (или близкой к квадрату) укрупненной сеткой колонн - 18x12; 18x18; 18x24; 24x24 м и пр. Используется, в основном, напольный транспорт. Такая планировка позволяет размещать в здании технологические линии во взаимно перпендикулярных направлениях. Производственное здание приобретает определенную гибкость и универсальность, в нем обеспечивается, при необходимости, беспрепятственная смена оборудования и технологии, модернизация процесса.

Следует отметить, что укрупнение сетки колонн ведет к экономии производственной площади (до 9%), повышает эффективность ее использования. Практика показала, что для большинства производств, размещаемых в одноэтажных зданиях, оптимальны сетки колонн 18x12 и 24x12 м. При этом, шаг крайних колонн принимается равным 6 м (иногда 12 м), шаг средних колонн - 12 и 18 м.

Для упрощения конструктивного решения одноэтажные промышленные здания проектируют, в основном, с пролетами одного направления, одинаковой ширины и высоты. Исключения могут потребовать только технологические условия. При этом, образующиеся в многопролетном здании перепады высот более 1,2 м совмещают с температурными швами, перепады менее 1,2 м не учитывают.

Эффективность и сравнительно низкая стоимость возведения промышленных зданий из индустриальных элементов возможны при условии использования ограниченного набора объем но-планировочных и конструктивных элементов для строительства возможно широкого диапазона зданий. Для этого объемно-планировочные и конструктивные решения должны быть унифицированы, т.е. созданы оптимальные по своим параметрам пространственные элементы и конструктивные решения в ограниченном количестве, которые могут многократно применяться для промышленных зданий с размещением различных технологических процессов. На основе унификации проводится типизация строительных конструкций ограниченной номенклатуры.

Применение унифицированных конструкций, объем но-планировочных элементов промышленных зданий предполагает определенные правила размещения конструкций относительно координационных осей, т.н. привязки. Правила привязки, т.е. установленные расстояния от оси до грани или геометрической оси поперечного сечения конструктивного элемента позволяют максимально уменьшить (или полностью исключить) количество доборных элементов или дополнительных построечных работ в соединениях и сопряжениях конструкций промздания.

В одноэтажных каркасных зданиях для колонн крайних рядов и наружных стен используют привязку «О» (нулевая привязка) и привязку «250». Это означает, что при нулевой привязке внутренняя грань продольной стены условно совпадает с координационной осью, которая совмещается с наружной гранью колонны. При привязке «250» (в некоторых случаях и более, но кратной 250) наружная грань колонны смещается наружу с координационной оси на 250 мм. В торцах здания геометрическая ось несущих колонн смещается с координационной оси внутрь на 500 мм, что позволяет возвести фахверк торцовой панельной стены.

В местах устройства поперечного температурного шва геометрические оси несущих колонн смещают на 500 (для модуля 3М принимается 600) мм в обе стороны от оси шва, которую совмещают с поперечной координационной осью. Возможно устройство поперечного температурного шва на двух колоннах, геометрические оси которых совмещены с двумя поперечными координационными осями, расстояние между которыми принимается 1000 (1200) мм. Для продольного температурного шва или при перепаде высот смежных параллельных пролетов предусматривают два ряда колонн вдоль парных координационных осей, размещаемых на расстоянии 300, 550 (600) и 800 (900) мм. Примеры привязки приведены на рис. 24.7, 24.8.

В соответствии с размерами привязки и с учетом толщины навесных панелей горизонтальной разрезки для закрытия зазора между конструкциями применяют стандартные доборные элементы - вставки размерами 300, 350, 400, 550, 600, 650, 700, 800, 850, 900, 950 и 1000 мм.

Производственные здания для ряда отраслей промышленности создавались с применением унифицированных типовых секций (УТС) и унифицированных типовых пролетов (УТП). УТС - объемная часть здания, которая состоит из нескольких пролетов одной высоты, выполненная в железобетонных конструкциях, с подъемно-транспортным оборудованием грузоподъемностью до 50 т. Технологический процесс и конструктивное решение определяли габариты секции, представляющей собой температурный блок здания, ограниченный продольным и поперечным температурными швами. Например, для предприятий машиностроения применяют УТС с размерами 144x72 м, состоящую по ширине из восьми 18-ти метровых пролетов длиной 72 м, высотой 10,8 м и оснащенных мостовыми кранами грузоподъемностью 10-30 т.

На основе блокирования УТС и УТП проектируют здание в соответствии с заданными технологическими условиями. В зависимости от способа блокирования, разработаны проектные решения секций, рассчитанных на блокирование: с любой стороны, только вдоль пролетов и пристройку к многопролетным секциям.

Недостатком при использовании УТС и УТП явилось в ряде случаев необоснованное значительное увеличение площадей и объемов производственных зданий. Поэтому, целесообразней для компоновки зданий применять унифицированные объемнопланировочные элементы требуемых габаритов.

Следует учесть и решаемые в настоящее время задачи по упорядочению и реконструкции сложившихся городских промышленных районов, выводу за пределы города предприятий с большим количеством вредных выбросов.

Решению проблемы занятости образовавшихся свободных трудовых ресурсов в малых и средних городах, в сельской местности способствует создание предприятий небольшой производственной мощности, сравнительно небольших строительных объемов и производственных площадей. Применение стандартных унифицированных секций в этих случаях также ограничено.

Современное производство характеризуется проведением модернизации, постоянным совершенствованием технологического процесса, поисками новых технологических решений. При этом возможны изменения направления технологического процесса, перестановка или замена оборудования. Это требует от современного производственного здания планировочной универсальности. В одноэтажных зданиях это осуществляется переходом на крупную ячейковую структуру - 12x12; 18x18; 18x24; 24x24; 24x30 (36); 36x36 м. В многоэтажных зданиях - 12x6; 12x12; 18x6 м.

Кроме технологической гибкости, укрупнение сетки колонн повышает эффективность использования производственной площади за счет установки большего числа единиц оборудования и, таким образом, повышается мощность предприятия.

Промежуточное положение между одноэтажными и многоэтажными занимают двухэтажные промышленные здания. Второй этаж решается как пролетная структура повышенной высоты с крановым оборудованием. При этом размер пролета может быть равен ширине здания. Двухэтажные здания обладают рядом преимуществ перед одноэтажными. В частности, их использование в машиностроении позволяет сократить площадь застройки предприятия на 30 -40%, строительный объем зданий - до 15%. В двухэтажном здании могут использоваться: мелкая сетка колонн по первому и укрупненная - по второму этажам, а также укрупненные сетки колонн по первому и второму этажам(глав-ный производственный корпус ОАО «Москвич» - соответственно 12x12 м и 24x12 м; главный корпус шерстопрядильной фабрики в г. Невинномысске - 9x6 и 19x6 м).

Многоэтажные производственные здания применяют в производствах с малыми полезными нагрузками на перекрытие, что характерно для предприятий электроники, точного приборостроения, электротехнических, обувных и пр. Направление производственного процесса в многоэтажном здании осуществляется сверху вниз, с использованием сил гравитации.

Кроме технологических преимуществ (сокращение расстояния между цехами и пр.) по сравнению с одноэтажным, в многоэтажном здании уменьшаются (в полтора-два раза) эксплуатационные расходы на отопление ввиду сокращения площади наружного ограждения на единицу площади пола, экономится земля. Развитие архитектурной формы по вертикали позволяет улучшить архитектурное решение застройки с учетом градостроительной ситуации.

Недостатками многоэтажного здания можно считать сравнительно сложную систему внутренних транспортных коммуникаций (устройство грузовых, пассажирских лифтов), небольшие размеры сетки колонн, значительную стоимость строительно-монтажных работ.

Увеличение ширины многоэтажного здания сокращается периметр наружных стен, стоимость единицы площади. Разработаны проекты зданий шириной 60 и более метров. Требования обеспечения нормируемого для зрительной работы соответствующего уровня естественного освещения рабочего пространства ограничивает ширину многоэтажного здания до 24 м. В проектах следует предусмотреть возможность надстройки и пристройки многоэтажных промзданий при последующей возможной реконструкции.

Многоэтажные и двухэтажные здания находят применение при расширении и реконструкции промышленных предприятий.

Поделиться: