Оин 1 энергомера схема подключения. Ограничитель перенапряжений. Ограничитель импульсных перенапряжений. Как устроен и как работает узип

Здесь привожу несколько типовых схем подключения устройств защиты от импульсных перенапряжений (УЗИП). Ниже вы найдете однофазные и трехфазные схемы для разных систем заземления: TN-C, TN-S и TN-C-S. Они наглядные и понятные для простого человека.

Сегодня существует большое количество производителей УЗИП. Сами устройства бывают разных моделей, характеристик и конструкций. Поэтому перед его монтажом обязательно изучите паспорт и схему подключения. В принципе, суть подключения у всех УЗИП одинаковая, но все же рекомендую сначала прочитать инструкцию.

Во всех выложенных схемах присутствуют УЗО и групповые автоматические выключатели . Их я указал для наглядности и полноты распределительного щитка. Эта "начинка" щитка у вас может быть совсем другая.

1. Схема подключения УЗИП в однофазной сети системы заземления TN-S.

На данной схеме представлен УЗИП серии Easy9 производителя Schneider Electric. К нему подключаются следующие проводники: фазный, нулевой рабочий и нулевой защитный. Здесь он устанавливается сразу после вводного автомата. Все контакты на любом УЗИП обозначены. Поэтому куда подключать "фазу", а куда "ноль" можно легко определить. Зеленый флажок на корпусе указывает на исправное состояние, а красный флажок сигнализирует о неисправной касете.

Представленное устройство относится к классу 2. Оно одно самостоятельно не способно защитить от прямого удара молнии. Грамотный выбор УЗИП это сложная и уже отдельная тема.

Думаю тут все понятно...

Ниже представлена аналогичная схема подключения УЗИП, но уже без электросчетчика и с использованием общего УЗО.

2. Схема подключения УЗИП в трехфазной сети системы заземления TN-S.

На схеме также изображен УЗИП производителя Schneider Electric серии Easy9, но уже для 3-х фазной сети. На рисунке изображено 4-х полюсное устройство с подключением нулевого рабочего проводника.

Еще существует 3-х полюсное УЗИП этой же серии. Оно применяется в системе заземления TN-C. В нем нет контакта для подключения нулевого рабочего проводника.

3. Схема подключения УЗИП в трехфазной сети системы заземления TN-C.

Здесь изображен УЗИП фирмы IEK. Данная схема представляет собой обычный вводной щит для частного дома. Он состоит из вводного автомата, электросчетчика, УЗИП и общего противопожарного УЗО. Также на схеме показан переход с системы заземления TN-C на TN-C-S, что требуется современными нормами.

На первом рисунке изображен 4-х полюсный вводной автомат, а на втором 3-х полюсный.

Выше представлены наглядные схемы подключения УЗИП. Думаю они понятны вам. Если остались вопросы, то жду их в комментариях.

Улыбнемся:

Нет постояннее соединения, чем временная скрутка!

Любое электротехническое оборудование создается для работы с определённой электрической энергией, зависящей от тока и напряжения в сети. Когда их величина становится больше запроектированной нормы, то возникает аварийный режим.

Предотвратить возможность его образования или ликвидировать разрушение электрооборудования призваны защиты. Они создаются под конкретные условия возникновения аварии.

Особенности защит домашней электропроводки от повышенного напряжения

Изоляция бытовой электрической сети рассчитывается на предельное значение напряжения чуть выше одного-полутора киловольт. Если оно возрастает больше, то через диэлектрический слой начинает проникать искровой разряд, который может перерасти в дугу, образующую пожар.

Чтобы предотвратить его развитие создают защиты, работающие по одному из двух принципов:

1. отключения электрической схемы дома или квартиры от повышенного напряжения;

2. отвода опасного потенциала перенапряжения от защищаемого участка за счет быстрого его перенаправления на контур земли.

При незначительном повышении напряжения в сети исправить положение призваны также . Но, в большинстве своем они создаются для поддержания рабочих параметров электроснабжения в ограниченном диапазоне его регулирования на входе, а не как защитное устройство. Их технические возможности ограничены.

В домашней проводке напряжение может повыситься:

1. на относительно продолжительный срок, когда происходит отгорание нуля в трехфазной схеме и потенциал нейтрали смещается в зависимости от сопротивления случайно подключенных потребителей;

2. кратковременным импульсом.

С первым видом неисправности успешно справляется реле контроля напряжения. Оно постоянно занимается мониторингом входных параметров сети и при достижении ими уровня верхней уставки отключает схему от питания до момента устранения аварии.

Причинами появления кратковременно возникающих импульсов перенапряжения могут быть две ситуации:

1. одновременное отключение нескольких мощных потребителей на питающей линии, когда трансформаторная подстанция не успевает мгновенно стабилизировать систему;

2. ударе грозового разряда молнии в электрооборудование ЛЭП, подстанции или дома.

Второй вариант развития аварии представляют наибо́льшую опасность, чем во всех предыдущих случаях. Сила тока молнии достигает огромных величин. При усредненных расчетах ее принимают в 200 кА.

Она при ударе в молниеприемник и нормальной работе молниезащиты здания протекает по молниеотводу на . В этот момент во всех рядом расположенных проводниках по закону индукции наводится ЭДС, величина которой измеряется киловольтами.

Она может появиться даже в отключенной от сети проводке и сжечь ее оборудование, включая дорогостоящие телевизоры, холодильники, компьютеры.

Молния может ударить и в питающую здание воздушную ЛЭП. В этой ситуации нормально работают разрядники линии, гася ее энергию на потенциал земли. Но полностью ликвидировать его они не способны.

Часть высоковольтного импульса по проводам подключенной схемы станет растекаться во все возможные стороны и придет на ввод жилого дома, а с него — ко всем подключенным приборам чтобы сжечь их наиболее слабые места: электродвигатели и электронные компоненты.

В итоге мы получили два варианта повреждения дорогостоящего бытового электрооборудования жилого здания при нормальном ликвидации штатными защитами последствий удара молнии в молниеприемник собственного здания или питающую ЛЭП. Напрашивается вывод: необходимо устанавливать для них автоматическую защиту от импульсных разрядов .

Виды ограничителей перенапряжения для домашней электропроводки

Ассортимент подобных защит создается для работы в разных условиях, отличается конструкцией, применяемыми материалами, технологией работы.

Принципы формирования элементной базы ОПН

При создании защит от перенапряжения учитываются технические возможности различных конструкторских решений. Для газонаполненных разрядников характерно то, что они после окончания прохождения импульса разряда поддерживают протекание дополнительного тока, близкого по величине к нагрузке короткого замыкания. Его называют сопровождающим током.

Разрядники, обеспечивающие ток сопровождения порядка 100÷400 ампер, сами могут стать источником пожара и не обеспечить защиту. Их нельзя устанавливать для защиты изоляции от пробоя между любой фазой, рабочим и защитным нулем. Модели других типов разрядников работают вполне надежно внутри сети 0,4 кВ.

В домашней проводке приоритет в защитах от перенапряжения получили варисторные устройства . При нормальных условиях эксплуатации электроустановки они создают очень маленькие токи утечек до нескольких миллиампер, а во время прохождения высоковольтного импульса напряжения максимально быстро переводятся в туннельный режим, когда способны пропускать до тысяч ампер.

Классы стойкости изоляции домашней электропроводки к импульсным перенапряжениям

Электрооборудование жилых зданий создается по четырем категориям, которые обозначаются римскими цифрами IV÷I и характеризуются предельной величиной допустимого перенапряжения в 6, 4, 2,5 и 1,5 киловольта. Под эти зоны и проектируются защиты от импульсных перенапряжений.

В технической литературе их принято называть «УЗИП» , что расшифровывается как устройство защиты от импульсного перенапряжения . Производители электрооборудования в маркетинговых целях ввели более понятное для простого населения определение — ограничители. В интернете можно встретить и другие названия.

Поэтому, чтобы не запутаться в используемой терминологии, рекомендуется обращаться к техническим характеристикам устройств, а не только к их наименованию.

Основные параметры взаимосвязи категорий стойкости изоляции с зонами опасности здания и применением для них трех классов УЗИП поможет понять приведенный ниже рисунок.

Он демонстрирует, что на участке от трансформаторной подстанции по линии электропередач до вводного щита может прийти импульс в 6 киловольт. Его величину должен снизить ограничитель перенапряжения класса I в зоне 1 до четырех кВ.

В распределительном щитке зоны 2 работает ограничитель класса II, снижая напряжение до 2,5 кВ. Внутри жилой комнаты с зоной 3 УЗИП класса III обеспечивает итоговое снижение импульса до 1,5 киловольта.

Как видим, все три класса ограничителей работают комплексно, последовательно и поочередно снижают импульс перенапряжения до допустимой для изоляции электропроводки величины.

Если хоть один из составных элементов этой цепочки защит окажется неисправным, то откажет вся система и возникнет пробой изоляции на конечном приборе. Использовать их необходимо комплексно, а в процессе эксплуатации требуется проверять исправность технического состояния хотя бы внешним осмотром.

Подбор варисторов для разных классов ограничителей перенапряжений

Производители оборудования устройства УЗИП снабжают моделями варисторов, подобранных по вольт-амперным характеристикам. Их вид и рабочие пределы показаны на соответствующем графике.

Каждому классу защиты соответствует свое напряжение и ток открытия. Устанавливать их можно только на свое место.

Принципы формирования схем включения ограничителей перенапряжения

Для защиты линии электроснабжения квартиры могут использоваться различные принципы подключения УЗИП:

1. синфазно;

2. противофазно;

3. комбинированно.

В первом случае выполняется продольный принцип защиты каждого провода от перенапряжений относительно контура земли, а во втором — поперечный между каждой парой проводов. На основе сбора статистических данных обработки неисправностей и их анализа выявлено, что возникающие противофазные импульсные перенапряжения создают бо́льшие повреждения и поэтому считаются самыми опасными.

Комбинированный способ позволяет объединять оба предшествующих метода.

Варианты схем подключения ограничителей перенапряжения для системы заземления TN-S

Схема с электронными УЗИП и разрядниками


В этой схеме УЗИП всех трех классов устраняют импульсы перенапряжений между фазами линии и рабочим нулем N по цепочкам «провод - провод». Функция снижения синфазных перенапряжений возложена на разрядники определённого класса за счет их подключения между рабочим и защитным нулем.

Этот способ позволяет гальванически разъединять PE и N между собой. Положение нейтрали трехфазной сети зависит от симметрии приложенных нагрузок по фазам. Она всегда имеет какой-то потенциал, который может быть от долей до нескольких десятков вольт.

Если в системе работают блоки питания с импульсной нагрузкой, то от них высокочастотные помехи могут передаваться по цепям уравнивания потенциалов и заземления через РЕ-проводник к чувствительным электронным приборам, мешать их работе.

Включение разрядников в этом случае уменьшает воздействие перечисленных факторов за счет лучшей гальванической развязки, чем у электронных ограничителей на варисторах.

Схемы с электронными УЗИП в классах защит I и II

В этой схеме зашита от импульсных напряжений в вводном и распределительном щитах выполняется только электронными ОПН.

Они устраняют все синфазные перенапряжения (любых проводов относительно контура земли).

В классе III работает предыдущая схема с электронным ОПН и разрядником, обеспечивая защиту (провод — провод) для оконечного потребителя.

Особенности использования различных моделей ОПН с учетом очередности работы каскадов

При эксплуатации ступеней защит от импульсного перенапряжения требуется их согласование, координация. Она осуществляется удалением ступеней по кабелю на расстояние более 10 метров.

Объясняется это требование тем, что при попадании в схему высоковольтного импульса с крутой формой волны за счет индуктивного сопротивления жил на них происходит падение напряжения. Оно сразу прикладывается к первому каскаду, вызывает его срабатывание. Если это требование не выполнять, то происходит шунтирование ступеней, когда защита работает неправильно.

По такому же принципу подключаются и последующие каскады защит.

Когда по конструктивным особенностям оборудования оно расположено близко, то в схему искусственно включают дополнительные разделительные дроссели импульсного типа, создающие цепочку задержки. Их индуктивность настраивают в пределах 6÷15 микрогенри в зависимости от типа используемого ввода электропитания в здание.

Вариант такого подключения при близком расположении вводного и распределительного щитов и удаленном монтаже оконечных потребителей показан на схеме.

Монтируя дросселя по такой системе следует учитывать их возможность надежно работать при создаваемых нагрузках, выдерживать их предельные значения.

В целях удобства обслуживания защиты от импульсного перенапряжения вместе с дроссельными устройствами могут быть помещены в отдельный защитный щиток, последовательно связывающий вводное устройство с ГРЩ дома.

Один из вариантов подобного исполнения для здания, выполненного по системе зазамления TN-C-S, показан на схеме ниже.

При таком монтаже можно все три класса ограничителей размещать в одном месте, что удобно при обслуживании. Для этого надо последовательно между ступенями защит смонтировать разделительные дроссели.

Конструктивно вводное устройство, ГРЩ и защитный щиток при таком способе монтажа схемы следует располагать как можно ближе.

Комбинированное расположение УЗИП и дросселей в одном месте — защитном щитке позволяет исключить попадание импульсов перенапряжения уже на оборудование ГРЩ, в котором выполняется разделение PEN проводника.

Подключение силовых кабелей к ГЗЩ имеет особенности: их необходимо прокладывать по кратчайшим путям, избегая совместного соприкосновения для участков защищенной схемы и без защит.

Современные производители постоянно модифицируют свои разработки УЗИП, используя встроенные импульсные разделительные дроссели. Они позволили не только располагать ступени защит на близком расстоянии по кабелю, но и объединять их в отдельном блоке.

Сейчас на рынке, с учетом реализации этого метода, появились конструкции УЗИП комбинированных классов I+II+III или I+II. Различный ассортимент моделей таких разрядников выпускает российская копания Hakel.

Они создаются под разные системы заземления здания, работают без установки дополнительных ступеней защит, но требуют выполнения определенных технических условий монтажа по длине подключаемого кабеля. В большинстве случаев он должен быть менее 5 метров.

Для нормальной работы электронного оборудования и защиты его от помех высокой частоты выпускаются различные фильтры, в которые включают УЗИП класса III. Они нуждаются в подключении к контуру заземления через РЕ проводник.

Особенности защиты сложной бытовой техники от импульсов перенапряжений

Жизнь современного человека диктует необходимость использования различных электронных устройств, обрабатывающих и передающих информацию. Они довольно чувствительны к высокочастотным помехам и импульсам, плохо работают или вообще отказывают при их появлении. Для устранения подобных сбоев используют индивидуальное заземление корпуса прибора, называемое функциональным.

Его электрически отделяют от защитного РЕ проводника. Однако, при ударе молнии в молниезащиту между заземлениями здания или линии и функциональным электронного прибора по контуру земли потечет ток разряда, вызванный приложенным высоковольтным импульсом перенапряжения.

Устранить его можно выравниванием потенциалов этих контуров за счет монтажа специального разрядника между ними, который будет выравнивать потенциалы контуров при авариях и обеспечивать гальваническую развязку в повседневных условиях эксплуатации.

На выпуске подобных разрядников также специализируется копания Hakel.

Дополнительное требование к защите ОПН от коротких замыканий

Все УЗИП включаются в схему для выравнивания потенциалов между различными ее частями в критических ситуациях. При этом необходимо учитывать, что они сами, несмотря на наличие встроенной тепловой защиты варисторов, могут быть повреждены и стать из-за этого источником короткого замыкания, перерастающего в пожар.

Защита на варисторах может отказать при длительном превышении номинального напряжения, связанного, например, с отгоранием нуля в трехфазной питающей сети. Разрядники же, в отличие от электроники, вообще не снабжаются тепловой защитой.

По этим причинам все конструкции УЗИП дополнительно защищаются предохранителями, работающими при перегрузках и коротких замыканиях. Они обладают специальной сложной конструкцией и сильно отличаются от моделей с простой плавкой вставкой.

Применение автоматических выключателей для таких ситуаций не всегда оправданно: они повреждаются от импульсов грозовых разрядов, когда происходит сваривание силовых контактов.

Используя схему защиты УЗИП предохранителями необходимо соблюдать принцип создания ее иерархии методами селективности.

Как видим, чтобы обеспечить надежную защиту домашней электропроводки от импульсных перенапряжений необходимо скрупулезно подойти к этому вопросу, проанализировать вероятность возникновения аварий в проектной схеме с учетом работающей системы заземления и под нее выбрать наиболее подходящие ограничители ОПН.

Ограничитель импульсных перенапряжений - это один из наиболее широко известных высоковольтных приборов, использующийся для защиты сети.

Описание приспособления

Для начала стоит объяснить, из-за чего, в принципе, возникают импульсные перенапряжения и чем они опасны. Причиной появления этого процесса является нарушение в атмосферном или коммутационном процессе. Такие дефекты вполне способны нанести огромный ущерб электрическому оборудованию, которое подвергнется такому воздействию.

Тут стоит привести пример на громоотводе. Это устройство отлично справляется с отводом сильного разряда, бьющего в объект, однако оно никак не сможет помочь, если разряд попадет в сеть через воздушные линии. Если такое происходит, то первый же проводник, который попадется на пути у такого разряда, выйдет из строя, а также может стать причиной поломки другого электрического оборудования, которое подключено к этой же электрической сети. Элементарная защита - отключение всех приборов во время грозы, однако в некоторых случаях это невозможно, а потому были изобретены такие устройства, как ограничители перенапряжений ОПН.

Что даст использование устройства

Если говорить об обычных средствах защиты, то их конструктивное исполнение несколько хуже, чем у ОПН. При обычном исполнении устанавливаются карборундовые резисторы. Дополнительной конструкцией являются искровые промежутки, которые соединены между собой последовательным образом.

В ограничителях импульсных перенапряжений же имеются такие элементы, как нелинейные транзисторы. Основой для этих элементов стал оксид цинка. Таких деталей имеется несколько, и все они объединяются в одну колонку, которая помещается в специальный корпус из такого материала, как фарфор или полимер. Это обеспечивает полностью безопасное использование таких устройств, а также надежно защищает их от любых внешних воздействий.

Тут важно отметить, что основная особенность ограничителя перенапряжения - это конструкция оксидно-цинковых резисторов. Такое исполнение позволяет сильно расширить функции, которые может выполнять устройство.

Технические параметры

Как и у любого другого устройства, у ОПН имеется основная характеристика, которая определяет его работоспособность и качество. В данном случае таким показателем стала величина рабочего напряжения, которое может подводиться к клеммам устройства без какого-либо ограничения в плане времени.

Имеется еще одна характеристика - ток проводимости. Это значение тока, который проходит через прибор под воздействием напряжения. Измерить данный показатель можно лишь в условиях реального использования устройства. Основными числовыми показателями данного параметра являются емкость и активность. Общий показатель этой характеристики может достигать нескольких сотен микроампер. По полученному значению этой характеристики оценивается работоспособность ограничителя перенапряжений.

Описание устройства ОПН

Для того чтобы изготовить данное устройство, производители используют те же электротехнические и конструкторские методы, которые применяются в изготовлении других продуктов. Это наиболее заметно при осмотре размеров и материалов, использующихся для изготовления корпуса. Внешний вид также имеет некоторую схожесть с другими устройствами. Однако стоит отметить, что отдельного внимания удостаиваются такие вещи, как установка ограничителя перенапряжения, а также его дальнейшее подключение к общим электроустановкам потребительского типа.

Имеется несколько требований, которые предъявляются именно к этому классу устройств. Корпус ОПН должен быть полностью защищен от прямого прикосновения человека. Должен быть полностью исключен риск того, что устройство загорится из-за возможных перегрузок. Если элемент выйдет из строя, то это не должно повлечь за собой короткого замыкания в линии.

Назначение и применение ОПН

Основное предназначение нелинейных ограничителей перенапряжения - изоляции электрического оборудования от атмосферных или коммутационных перенапряжений. Данное устройство относится к группе высоковольтных приборов.

В этих аппаратах отсутствует такой раздел, как искровой промежуток. Если сравнивать диапазон действия ОПН и обычного то ограничитель способен выдерживать более глубокие перепады напряжения. Основная задача данного устройства - выдерживать эти нагрузки без ограничения по времени. Еще одно существенное отличие ограничителя перенапряжения от обычного вентильного заключается в том, что размеры, а также физический вес конструкции в данном случае гораздо ниже. Наличие такого элемента, как крышка из фарфора или полимеров, привело к тому, что внутренняя часть устройства надежно защищена от внешних воздействий окружающей среды.

ОПН-10

Устройство этого прибора несколько отличается от обычного ОПН. В данном варианте применяется колонка варисторов, которые заключены в покрышку. Для создания покрышки в данном случае используется уже не фарфор или полимеры, а стеклопластиковая труба, на которую опрессована оболочка из трекингостойкой кремнийорганической резины. Кроме того, колонка варисторов имеет алюминиевые выводы, которые поджаты с двух сторон, а также ввернуты внутрь трубы.

Правильное размещение ограничителей перенапряжений в линии электропитания имеет принципиальное значение для корректной работы спроектированной системы защиты от перенапряжений.

Как уже отмечалось ранее, при организации систем защиты от перенапряжений силового электроэнергетического оборудования ограничители монтируются в следующих местах:

  1. снаружи строительного объекта, в зоне молниезащиты 0B, на входе питающих кабелей к устройствам (чаще это ограничители классов II, иногда класса I);
  2. в месте перехода силовых кабелей через стену здания (в зависимости от уровня угрозы это ограничители класса I или II) - в кабельном соединении, заземленным кратчайшим путем к заземляющему устройству;
  3. внутри строительного объекта:
    • в локальных распределительных щитах (в зависимости от уровня угрозы это ограничители классов II или III);
    • поблизости от защищаемых устройств (чаще это ограничители класса III, иногда - класса II, с точки зрения слишком малого номинального тока ограничителей класса III, составляющего чаще всего 16 A).

Необходимо здесь подчеркнуть, что из всех мест расположения ограничителей перенапряжений, предложенных в разделе 443 нормы IEC 60364-4, единственно правильным является расположение в кабельном соединениии при условии, что соединение находится в стене защищаемого здания.

Размещение ограничителей в воздушной линии:

В случае размещения ограничителей в воздушной линии, нельзя забывать о возможности проникновения ударов перенапряжений к силовому кабелю на трассе "столб воздушной линии - здание", что делает это размещение бесполезным.

Размещение ограничителей внутри здания:

1.6. Стойкость ограничителей к короткому замыканию

Ограничители перенапряжений следует защищать от последствий тока короткого замыкания. Из его схемы включения (парралельное включение относительно зажимов защищаемой цепи) следует, что любое действие ограничителя перенапряжений вызывает в последствии протекание тока короткого замыкания в защищаемой линии. По этой причине производитель должен заявить, когда и какой предохранитель следует использовать последовательно с ограничителем, чтобы гарантировать соответствующую стойкость к току короткого замыкания схемы предохранитель - ограничитель перенапряжений.

Определяя потребность использования дополнительной защиты ограничителя переанпряжений включенным последовательно предохранителем, следует сравнить значения номинальных токов I F1 фазных предохранителей защищаемой цепи с допустимым значением тока I DOP , который может протекать в цепи ограничителя перенапряжений (рекомендованный производителем). В зависимости от результатов такого сравнения, следует использовать схему:

  • I F1 ≤ I DOP - без дополнительного защитного предохранителя (рис.1.3.a),
  • I F1 > I DOP - содержащую дополнительный предохранитель F2, включенный последовательно с ограничителями перенапряжений (рис.1.3.b).

Полная версия статьи доступна только зарегистрированным пользователям!

Получите доступ ко всем материалам на сайте совершенно бесплатно!

1.7. Схемы подключения ограничителей перенапряжения

В зависимости от системы заземления сети электроснабжения, используется один из видов соединения ограничителей перенапряжений, представленных на рис. 1.4, 1.5 или 1.6.

В системе сети TT существует возможность применения 4 типовых ограничителей перенапряжений или так называемой системы 3+1 (3 ограничителя перенапряжений + 1 ограничитель N-PE). Такие системы соединений касаются ограничителей классов I и II.

В случае применения ограничителей класса I, необходимо использовать системы с дополнительными предохранителями, соединенными последовательно с ограничителями. Применение предохранителей не обязательно, если выполняются соответствующие условия, описанные в разделе 1.6.


Полная версия статьи доступна только зарегистрированным пользователям!

Получите доступ ко всем материалам на сайте совершенно бесплатно!

Исправная и долгосрочная работа бытовой техники и электроники напрямую зависит от качества потребляемой энергии. Текущие значения напряжения и тока в электрических сетях по тем или иным причинам не всегда соответствуют заданным величинам. Для приведения искаженных параметров электроэнергии в норму служат системы стабилизации, установленные на вводе электрической сети дома или квартиры, а также в схемах электронных устройств. Однако не следует забывать, что в электрических сетях имеет место явление импульсного перенапряжения, которое длится всего доли секунды. Величина действующего напряжения при этом может многократно превысить номинальное и безвозвратно вывести из строя оборудование. Причиной появления импульсов могут служить воздействие грозы на электрические системы или коммутационные процессы в понижающих трансформаторных подстанциях, а также в схеме установок с высокой реактивной нагрузкой. Защитить электрические сети и оборудование можно с помощью устройств защиты от импульсных перенапряжений. В этой статье мы рассмотрим, как должно выполняться подключение УЗИП в щитке.

Правила и особенности установки

Установку устройств защиты от перенапряжения регламентируют Правила устройства электроустановок (ПУЭ), являющиеся основным нормативным документом в вопросах безопасного обслуживания электрических установок. Согласно требованиям ПУЭ, устройства защиты от перенапряжения подлежат обязательной установке на объектах с предусмотренной системой молниезащиты, а также в домах, электроснабжение которых осуществляется по проводам воздушных линий, в регионах, с годовой продолжительностью грозовых периодов, превышающих 25 часов.

Необходимость подключения УЗИП на объектах в районах, где грозы не являются частым явлением, носит рекомендательный характер, однако, учитывая, к каким разрушительным последствиям может привести прямой удар молнии, целесообразно выполнить все необходимые мероприятия для защиты от данного вида стихии даже для негрозоопасной местности.

Защита от импульсных напряжений промышленных и административных зданий, многоквартирных домов входит в сферу деятельности электромонтажных организаций. Установка и подключение УЗИП в частном доме или в квартире ложится на плечи хозяина жилья, поэтому каждому домовладельцу необходимо, хотя бы в общих чертах, знать основные правила обустройства защиты от импульсных перенапряжений, а также как установить и как подключить необходимое для этого оборудование.

Монтаж УЗИП необходимо выполнить соблюдая требования технических нормативов, которые предусматривают 3 уровня защиты. В качестве первого уровня защиты находят применение вентильные разрядники, которые относятся к категории УЗИП 1 класса. Они обеспечивают защиту от непосредственных грозовых воздействий на линии электропередач и устанавливаются в ВРУ (вводных распределительных устройствах). Дополнительная защита от удара молний и коммутационных процессов в понижающих трансформаторных подстанциях обеспечивается защитными аппаратами 2 класса, которые устанавливаются и подключаются в распределительных щитах дома или квартиры. Для защиты электроники и электротехники, чувствительной даже к незначительным импульсным перенапряжениям служат УЗИП 3 класса, подключение которых производится в щитке питания потребителей в непосредственной близости от них.

Как установить оборудование для того, чтобы обеспечить трехступенчатую защиту от импульсных перенапряжений, показано на схеме:

Более доступное объяснение:

Варианты подключения

Самой современной и отвечающая всем требованиям безопасности является система заземления , при которой нулевой рабочий (N) и нулевой защитный (PE) провод во всей системе энергоснабжения работают раздельно. Система представляет комбинированный вариант, при котором N и PE от источника питания до ВРУ дома объединены в один провод, после которого начинается . Следует помнить, что данная схема не будет работать без заземления, поэтому необходимо обязательно произвести его обустройство. наиболее простая и распространенная в устаревшем жилом фонде система заземления, при которой роль нулевого и рабочего проводника выполняет один провод (PEN).

Ниже на схеме показано, как подключить УЗИП класса II в однофазной сети, установленного в щитке квартиры или частного дома с двумя вариантами системы заземления. Для такого варианта подключения необходимо подобрать простейший одноблочный защитный аппарат, с соответствующим рабочим напряжением.

Схема подключения с системой заземления tn-c:

Если предусмотрена система заземления tn-s, в данном случае потребуется установка и подключение УЗИП, состоящего из двух модулей, конструкцией которого предусмотрены отдельные клеммы, для подключения фазного, нулевого рабочего и защитного проводов, обозначенные соответствующей маркировкой.

Поделиться: