Микросхемы преобразователей напряжения dc. Повышающий DC-DC преобразователь. Принцип работы. Понижающий конвертер чоппер - конвертер типа buck

Благодаря развитию современной электроники, в большом количестве выпускаются специализированные микросхемы стабилизаторы тока и напряжения. Они делятся по функционалу на два основных вида, DC DC повышающий преобразователь напряжения и понижающие. Некоторые совмещают в себе оба типа, но это сказывается на КПД не в лучшую сторону.

Когда то многие радиолюбители мечтали о импульсных стабилизаторах, но они были редкими и дефицитными. Особенно радует ассортимент в китайских магазинах.


  • 1. Применение
  • 2. Популярные преобразования
  • 3. Повышающие преобразователи напряжения
  • 4. Примеры повышателей
  • 5. Tusotek
  • 6. На XL4016
  • 7. На XL6009
  • 8. MT3608
  • 9. Высоковольтные на 220
  • 10. Мощные преобразователи

Применение

Недавно я закупил много различных светодиодов на 1W, 3W, 5W, 10W, 20W, 30W, 50W, 100W. Все они низкого качества, для сравнения их с качественными. Чтобы всю эту кучу подключить и запитать у меня есть блоки питания от ноутбуков на 12 В и 19V. Пришлось активно полистать Aliexpress в поисках низковольтных светодиодных драйверов.

Были куплены современные повышающие преобразователи напряжения DC DC и понижающие, на 1-2 Ампера и мощные на 5-7 ампер. К тому же они отлично подойдут для подключения ноутбука к 12В в автомобиле, 80-90 ватт потянут. Они вполне подойдут в качестве зарядного устройства для автомобильных аккумуляторов на 12В и 24В.

В китайских интернет-магазинах немного подороже стабилизаторов напряжения.

Популярными микросхемами для повышающих импульсных стабилизаторов стали:

  1. LM2577, устаревшая с низким КПД;
  2. XL4016, в 2 раза эффективней 2577;
  3. XL6009;
  4. MT3608.

Стабилизаторы обозначаются таким образом AC-DC, DC-DC. АС – это переменный ток, DC – это постоянный. Это облегчит поиск, если указать в запросе.

Делать DC DC повышающий преобразователь своими руками не рационально, потрачу слишком много времени на сборку и настройку. У китайцев можно купить за 50-250руб, эта цена включает и доставку. За эту сумму получу почти готовое изделие, которое можно максимально быстро доработать.

Данные импульсные ИМС используются совместно с другими, написал характеристики и datasheet к популярным ИМС для питания , .

Популярные преобразования

Стабилизаторы-повышатели классифицируются на низковольтные и высоковольтные от 220 до 400 вольт. Конечно есть готовые блоки с фиксированным значением повышения, но я предпочитаю настраиваемые, у них более широкий функционал.

Чаще всего востребованы преобразования:

  1. 12В — 19V;
  2. 12 — 24 Вольт;
  3. 5 — 12V;
  4. 3 — 12В
  5. 12 — 220В;
  6. 24В — 220В.

Повышающие называют автомобильными инверторами.

Повышающие преобразователи напряжения

Мой лабораторный блок питания работает от блока ноутбука на 19V 90W, но этого не хватает для проверки последовательно подключенных светодиодов. Последовательная LED цепочка требует от 30В до 50В. Покупать готовый блок на 50-60 Вольт и 150W оказалось дороговато, около 2000 руб. Поэтому заказал первый повышающий стабилизатор за 500 руб. с повышением до 50В. После проверки оказалось, что он максимум до 32В, потому что на входе и выходе стоят конденсаторы на 35V. Убедительно написал продавцу своё возмущение, и через пару дней мне вернули денежку.

Заказал второй до 55V под брендом Tusotek за 280руб, повышатель оказался отличный. С 12В легко повышает до 60V, выше крутить построечный резистор не стал, вдруг сгорит. Радиатор приклеен на теплопроводящий клей, поэтому маркировку микросхемы посмотреть не удалось. Охлаждение сделано немного неправильно, теплоотводная площадка диода Шотки и контроллера прикреплена к плате, а не к радиатору.

Примеры повышателей

XL4016

..

Рассмотрим 4 модели, которые у меня есть в наличии. Тратить время на фото не стал, взял и продавцов.

Характеристики.

Tusotek XL4016 Драйвер MT3608
Входное, В 6 – 35В 6 – 32В 5 – 32В 2-24V
Ток на входе до 10А до 10А
Выход, В 6 – 55В 6 – 32В 6 – 60В до 28В
Ток на выходе 5А, макс 7А 5А, макс 8А макс 2А 1А, макс 2А
Цена 260руб 250руб 270руб 55руб

У меня большой опыт работы с китайскими товарами, большинство из них сразу имеют недостатки. Перед эксплуатацией их осматриваю и дорабатываю для увеличения надежности всей конструкции. В основном это проблемы сборки, которые возникают при быстрой сборке изделий. Дорабатываю светодиодные прожекторы, лампы для дома, автомобильные лампы ближнего и дальнего света, контроллеры для управления дневными ходовыми огнями ДХО. Рекомендую это делать всем, за минимум потраченного времени срок службы можно увеличить вдвое.

Будьте бдительны, не все имеют защиту от короткого замыкания, перегрева, перегрузки и неправильного подключения.

Реальная мощность зависит от режима, в спецификациях указывают максимальную. Характеристики конечно у каждого производителя будут отличаться, они ставят разные диоды, дроссель мотают проводом разной толщины.

Tusotek

На мой взгляд, самый лучший из всех повышающих стабилизаторов. У некоторых бывает элементы не имеют запаса по характеристикам или они ниже чем у ШИМ микросхем, из-за чего они не могут дать и половины обещанного тока. У Tusotek на входе стоит конденсатор 1000мФ 35V, на выходе 470мФ 63V. Теплоотводной стороной с металлической пластиной они припаяны к плате. Но припаяны плохо и косо, на плате лежит только один край, под другим щель. Без разбора не понятно, насколько хорошо они запаяны. Если совсем плохо, то лучше их демонтировать и поставить этой стороной на радиатор, охлаждение улучшится в 2 раза.

Переменным резистором выставляется необходимое количество вольт. Оно останется неизменным, если менять напряжение на входе, оно от него не зависит. Например, ставил на выходе 50В, на входе с 5В повышал до 12В, поставленные 50V не менялись.

На XL4016

Этот преобразователь имеет такую особенность, что может повышать только до 50% от входного количества вольт. Если подключить 12В, то максимальное увеличение будет 18В. В описании было указано, что его можно применять для ноутбуков, которые питаются максимум от 19V. Но его главное предназначение оказалось работа с ноутбуками от автомобильного аккумулятора. Наверное отграничение в 50% можно убрать, изменив резисторы, которые задают этот режим. Вольты на выходе напрямую зависят от количества входящих.

Отвод тепла сделан гораздо лучше, радиаторы поставлены правильно. Только вместо термопасты теплопроводящая прокладка, чтобы избежать электрического контакта с радиатором. На входе конденсатор 470мФ 50V, на другом конце 470мФ на 35V.

На XL6009

Представитель современных эффективных преобразователей, как и устаревшие модели на LM2596 выпускается с нескольких вариантах, от миниатюрных до моделей с индикаторами напряжения.

Пример эффективности:

  • 92% при преобразовании 12V в 19V, нагрузка 2А.

В даташите сразу указана схема использования в качестве питания ноутбука в автомобиле от 10V до 30V. Так же на XL6009 легко реализовать двуполярное питания на +24 и -24В. Как у большинства преобразователей КПД снижается, чем выше разница напряжений и больше Ампер.

MT3608

Миниатюрная модель с хорошим КПД до 97%, частота ШИМ 1,2 МГц. Эффективность повышается при увеличении входящего напряжения и падает при увеличении тока. На повышающем преобразователе MT3608 можно рассчитывать на небольшой ток, внутренне ограничение 4А на случай замыкания. По вольтам желательно не превышать 24.

Высоковольтные на 220

Блоки преобразования с 12, 24 вольт на 220 широко распространены у автолюбителей как . Используются для подключения приборов с питанием на 220В. У китайцев в основном продаются 7-10 моделей таких модулей, остальное это готовые устройства. Цена от 400 руб. Отдельно хочу отметить, если например на готовом блоке указано 500W, то это часто будет кратковременная максимальная мощность. Реальная долговременная будет около 240W.

Мощные преобразователи

Для особых случаев бывают нужны мощные DC-DC повышающие преобразователи на 10-20А и до 120В. Покажу несколько популярных и доступных моделей. Они в основном не имеют маркировки или продавец её скрывает, чтобы не покупали в другом месте. Лично не тестировал, по вольтажу они сосуществуют по обещанным характеристикам. А вот ампер будет немного поменьше. Хотя изделия такой ценовой категории у меня всегда держат заявленную нагрузку, покупал похожие аппараты только с ЖК экранами.

600W

Мощный №1:

  1. power 600W;
  2. 10-60V преобразует в 12-80V;
  3. цена от 800руб.

Найти можно по запросу «600W DC 10-60V to 12-80V Boost Converter Step Up»

400W

Мощный №2:

  1. power 400W;
  2. 6-40V преобразует в 8-80V;
  3. на выходе до 10А;
  4. цена от 1200руб.

Для поиска укажите в поисковике «DC 400W 10A 8-80V Boost Converter Step-Up»

B900W

Мощный №3:

  1. power 900W;
  2. 8-40V преобразует в 10-120V;
  3. на выходе до 15А.
  4. цена от 1400руб.

Единственный блок который обозначают как B900W и его можно легко найти.

Подходит например для питания ноутбука в авто, для преобразования 12-24, для подзарядки автомобильного аккумулятора от БП на 12V и т.п

Преобразователь добирался с левым треком типа UAххххYP и о-очень долго, 3 месяца, чуть диспут не открыл.
Продавец хорошо замотал устройство.

В комплекте были латунные стойки с гаечками и шайбочками, которые сразу прикрутил, чтобы не затерялись.

Монтаж довольно качественный, плата отмыта.
Радиаторы вполне приличные, хорошо закреплены и изолированы от схемы.
Дроссель намотан в 3 провода - правильное решение на таких частотах и токах.
Единственное - дроссель не закреплён и висит на самих проводах.

Реальная схема устройства:

Наличие стабилизатора питания микросхемы порадовало - это значительно расширяет диапазон входного рабочего напряжения сверху (до 32В).
Выходное напряжение естественно не может быть меньше входного.
Подстроечным многооборотным резистором можно настраивать выходное стабилизированное напряжение в диапазоне от входного до 35В
Красный светодиодный индикатор горит при наличии напряжения на выходе.
Собран преобразователь на базе широко распространённого ШИМ контроллера UC3843AN

Схема подключения - стандартная, добавлен эмиттерный повторитель на транзисторе для компенсации сигнала с токового датчика. Это позволяет повысить чувствительность токовой защиты и снизить потери напряжения на токовом датчике.
Рабочая частота 120кГц

Если-бы Китайцы и тут не накосячили, я-бы сильно удивился:)
- При небольшой нагрузке, генерация происходит пачками, при этом слышно шипение дросселя. Также заметна задержка регулирования при изменении нагрузки.
Это происходит из-за неверно выбранной цепи компенсации обратной связи (конденсатор 100нФ между 1 и 2 ногами). Значительно уменьшил ёмкость конденсатора (до 200пФ) и подпаял сверху резистор 47кОм.
Шипение пропало, стабильность работы возросла.

Конденсатор для фильтрации импульсных помех на входе токовой защиты поставить забыли. Поставил конденсатор 200пФ между 3 ногой и общим проводником.

Отсутствует шунтирующая керамика параллельно электролитам. При необходимости, можно допаять SMD керамику.

Защита от перегрузки имеется, защиты от КЗ нет.
Никаких фильтров не предусмотрено, входной и выходной конденсаторы не очень хорошо сглаживают напряжение при мощной нагрузке.

Если входное напряжение вблизи нижней границе допуска (10-12В), имеет смысл переключить питание контроллера со входной цепи на выходную, перепаяв предусмотренную на плате перемычку

Осциллограмма на ключе при входном напряжении 12В

При небольшой нагрузке наблюдается колебательный процесс дросселя

Вот что удалось выжать в максимуме при входном напряжении 12В
Вход 12В / 9A Выход 20В / 4,5А (90 Вт)
При этом оба радиатора прилично разогрелись, но перегрева не было
Осциллограммы на ключе и выходе. Как видно, пульсации очень велики из за небольших емкостей и отсутствия шунтирующей керамики

Если входной ток достигает 10А, преобразователь начинает противно свистеть (срабатывает токовая защита) и выходное напряжение снижается

На самом деле, максимальная мощность преобразователя сильно зависит от входного напряжения. Производитель заявляет 150Вт, максимальный входной ток 10А, максимальный выходной ток 6А. Если преобразовывать 24В в 30В, то конечно он выдаст заявленные 150Вт и даже немного больше, только вряд-ли это кому-то нужно. При входном напряжении 12В, можно рассчитывать только на 90Вт

Выводы делайте сами:)

Планирую купить +94 Добавить в избранное Обзор понравился +68 +149

Мощный и довольно хороший повышающий преобразователь напряжения можно построить на основе простого мультивибратора.
В моем случае этот инвертор был построен просто для обзора работы, был сделан также небольшой ролик с работой данного инвертора.

О схеме в целом — простой двухтактный инвертор, проще трудно представить. Задающим генератором и одновременно силовой частью являются мощные полевые транзисторы (желательно использовать ключи типа IRFP260, IRFP460 и аналогичные) подключенные по схеме мультивибратора. В качестве трансформатора можно использовать готовый транс от компьютерного блока питания (самый большой трансформатор).

Для наших целей нужно задействовать обмотки 12 Вольт и среднюю точку (коса, отвод). На выходе трансформатора напряжение может доходить до 260 Вольт. Поскольку выходное напряжение является переменным, то нужно выпрямить диодным мостом. Мост желательно собрать из 4-х отдельных диодов, готовые диодные мосты предназначенны для сетевых частот 50Гц, а в нашей схеме выходная частота в районе 50кГц.

Обязательно использовать импульсные, быстрые или ультрабыстрые диоды с обратным напряжением не ниже 400 Вольт и с допустимым током 1 Ампер и Выше. Можно задействовать диоды MUR460, UF5408,HER307, HER207, UF4007, и другие.
Те же самые диоды рекомендую использовать и в схеме задающей цепи.

Схема инвертора работает на основе параллельного резонанса, следовательно, частота работы будет зависеть от нашего колебательного контура — в лице первичной обмотки трансформатора и конденсатору параллельно этой обмотке.
На счет мощности и работы в целом. Правильно собранная схема в дополнительной наладке не нуждается и работает сразу. В ходе работы ключи не должны вообще греться, если выход трансформатора не нагружен. Холостой ток инвертора может доходить до 300мА — это норма, выше уже проблема.

С хорошими ключами и трансформатором с этой схемы без особых проблем можно снять мощность в районе 300 Ватт, в некоторых случаях даже 500 ватт. Номинал входных напряжений довольно шиток, схема будет работать от источника 6 Вольт до 32 -х Вольт, больше подавать не рискнул.

Дросселя — мотаются проводом 1,2мм на желто-белых кольцах от дросселя групповой стабилизации в компьютерном блоке питания. Количество витков каждого дросселя -7, оба дросселя полностью одинаковы.

Конденсаторы параллельно первичной обмотке может чуть нагреться в ходе работы, поэтому советую использовать высоковольтные конденсаторы с рабочим напряжением 400 Вольт и выше.

Схема проста и полностью работоспособна, но не смотря на простоту и доступность конструкции — это не идеальный вариант. Причина — не самое лучшее управление полевыми ключами. Схема лишена специализированного генератора и управляющей цепи, что делает ее не совсем надежный, если схема предназначена для длительной работы под нагрузкой. Схема может питать ЛДС и устройства, которые имеют встроенные ИИП.

Важное звено — трансформатор, должен быть хорошо намотан и правильно сфазирован, ибо он играет основную роль в надежной работе инвертора.

Первичная обмотка 2х5 витков шиной из 5 -и проводов 0,8 мм. Вторичная обмотка намотана проводом 0,8 мм и содержит 50 витков — это в случае самостоятельной намотки трансформатора.

Собрал недавно один цифровой прибор на микроконтроллере, и встал вопрос о его питании в походных условиях, ему надо напряжение 12 вольт, а ток примерно 50 мА. Тем более, он очень чувствителен к пульсации напряжения и из нескольких импульсных блоков питания, от какой-то аппаратуры он работать не захотел. Поискав в интернете, нашел один из самых оптимальных и дешевых вариантов: повышающий преобразователь DC-DC на микросхеме MC34063 . Для расчёта можно использовать программу - калькулятор. Вставил параметры которые нужны (он может работать как повышающий и понижающий) и получил вот такой результат:

Напряжение питания микросхемы не должно превышать 40 вольт, а ток не более 1.5 А. Печатные платы есть в сети и под smd детали, но у меня их нет в наличии, поэтому решил делать свою. Обратите внимание, что там нарисованы два сопротивления по 0.2 Ом. У меня был только 5-ти ваттный, поэтому и делал под него, но если бы нашел по меньше впаял бы в другое место, а лишнее отрезал.

Вместо сопротивления на R1- 1.5 кОм, поставил подстроечный на 5 кОм, чтобы регулировать выходное напряжение. Кстати, регулирует в довольно приличных пределах от 7 до 16, можно и больше но конденсатор выходной стоит на 16 вольт, поэтому дальше не поднимал.

А теперь коротко работе преобразователя. Подал 3 вольта, отрегулировал (R1) выход 12 вольт - и это напряжение он держит при снижении питания до 2.5 вольта, и поднятии до 11 вольт!

Двухтактный генератор импульсов, в котором за счет пропорционального токового управления транзисторами существенно уменьшены потери на их переключение и повышен КПД преобразователя, собран на транзисторах VT1 и VT2 (КТ837К). Ток положительной обратной связи протекает через обмотки III и IV трансформатора Т1 и нагрузку, подключенную к конденсатору С2. Роль диодов, выпрямляющих выходное напряжение, выполняют эмиттерные переходы транзисторов.

Особенностью генератора является срыв колебаний при отсутствии нагрузки, что автоматически решает проблему управления питанием. Проще говоря, такой преобразователь будет сам включаться тогда, когда от него потребуется что-нибудь запитать, и выключаться, когда нагрузка будет отключена. То есть, батарея питания может быть постоянно подключена к схеме и практически не расходоваться при отключенной нагрузке!

При заданных входном UВx. и выходном UBыx. напряжениях и числе витков обмоток I и II (w1) необходимое число витков обмоток III и IV (w2) с достаточной точностью можно рассчитать по формуле: w2=w1 (UВых. - UBх. + 0,9)/(UВx - 0,5). Конденсаторы имеют следующие номиналы. С1: 10-100 мкф, 6.3 В. С2: 10-100 мкф, 16 В.

Транзисторы следует выбирать, ориентируясь на допустимые значения тока базы (он не должен быть меньше тока нагрузки!!! ) и обратного напряжения эмиттер - база (оно должно быть больше удвоенной разности входного и выходного напряжений!!! ) .

Модуль Чаплыгина я собрал для того, чтобы сделать устройство для подзарядки своего смартфона в походных условиях, когда смартфон нельзя зарядить от розетки 220 В. Но увы... Максимум, что удалось выжать, используя 8 батареек соединенных параллельно, это около 350-375 мА зарядного тока при 4.75 В. выходного напряжения! Хотя телефон Nokia моей жены удается подзаряжать таким устройством. Без нагрузки мой Модуль Чаплыгина выдает 7 В. при входном напряжении 1.5 В. Он собран на транзисторах КТ837К.

На фото выше изображена псевдокрона, которую я использую для питания некоторых своих устройств, требующих 9 В. Внутри корпуса от батареи Крона находится аккумулятор ААА, стерео разъем, через который он заряжается, и преобразователь Чаплыгина. Он собран на транзисторах КТ209.

Трансформатор T1 намотан на кольце 2000НМ размером К7х4х2, обе обмотки наматывают одновременно в два провода. Чтобы не повредить изоляцию об острые наружные и внутренние грани кольца притупите их, скруглив острые края наждачной бумагой. Вначале мотаются обмотки III и IV (см. схему) которые содержат по 28 витков провода диаметром 0,16мм затем, так же в два провода, обмотки I и II которые содержат по 4 витка провода диаметром 0,25мм.

Удачи и успехов всем, кто решится на повторение преобразователя! :)

Поделиться: